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Gaussian Processes

Motivation

@ Given data, how to fit?
@ Try simple linear regression




Motivation

Yi=Bo+BiXi+e, €~ N0,
@ Parametric - produces line of “best fit," with estimates 3y, A1, 62.

@ Assumption on ¢; ~ N(0, o?) yields 95% uncertainty bands
@ Could change trend function...

+ Data
—— Regression Model
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Motivation

Y; = Bosin(x) +¢, € ~ N(0,5?)

@ Better
@ Strong assumption on trend

+ Data
—— Regression Model

""" 95% Uncertainty Interval
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Shifting from the parametric model

Consider
Yi = f(Xi) + €
with linear regression

@ Heavily dependent on correctly choosing basis functions for f(x;)

» How many parameters to choose?
» Should it be a polynomial?

@ Difficult to analyze trend in higher dimensions
@ Many practitioners blindly choose linear model



Basic GP Idea

For the regression problem of fitting (x,-,y,-)f\i1 to
Y =f(x)+e,

Gaussian Process (GP) regression does the following:
@ Assume f(x) has no closed parametric form

@ The sample data is one realization of a “random" function

@ Finds a distribution over all possible functions f(x) that are
consistent with observed data

» “Output” of the model is a distribution
» Completely data driven



Gaussian Processes

GP Applied to previous data set
Code input:

gp <- km(formula = ~1, design =
response = y, nugget.estim=TRUE)
predict (gp,data. frame (x=xmesh) )

data.frame (x=x),

@ formula = ~1 isthe trend assumption (i.e. this model assumes no
trend!)

+ Data
&N A —— Linear Model
Waa SRay — GP Model
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Gaussian Processes

Random sampling of f

5 Realizations (simulations) of f(x). Analogous to
@ Flipping a coin
@ Taking survey data

The initial data is considered as one realization of f

+ Data
A ——  GP Model
Tl Simulations




Technical Details

First, define a Gaussian Process

Definition
(Xt)teT is @ Gaussian Process if for any finite set of indices t,. . ., k,
the distribution of (X, ..., Xy ) is multivariate normal.

(Xt) has a covariance kernel C, and the covariance matrix of
(Xt ..., Xy,) has entries cov(X, Xy) = C(8;, ), 7,/ =1,..., k. Unless
otherwise specified, the mean is assumed to be 0.




Gaussian Processes

Technical Details

Gaussian Process regression attacks the problem of analyzing (for
z € RY)
Y(2) = 1(2) + €(2),

where €(x) is observation noise, by assuming
f(z) = u(z) + X(2),

where
@ 1 :RY — Ris a trend function

@ X is a mean—zero, square—integrable Gaussian process with
covariance kernel C



Gaussian Processes

Covariance Kernel

The covariance kernel determines how locations affect neighboring
outputs

@ Common assumption is to use:

» Stationary kernels — it depends only on the increment h=u — v

» Separable kernels — in higher dimensions, the kernel is a tensor
product of 1-d kernels.

Foru,v € RY,

d
c(h) = H (h;; 6)),

where h = (hy,..., hy) =u—vand gis a 1-d covariance kernel.



Example of covariance Kernel

Example

The Gaussian covariance kernel is defined as

g(h) = exp (;gj) :

lllustrates how quickly covariance decays as the distance h increases.



Prior Assumptions

The model depends on the following hyperparameters
@ 6 (characteristic length-scales)

» Affects the rate at which spatially distant data has an effect on
output

@ 7 (process variance)

» Affects overall fluctuation of the function f
@ o2 (noise variance)

» Variance of the observation noise ¢

These can be prespecified or fitted through MLE (or similar).

An optional trend function p(-) can be included



Gaussian Processes

Posterior
@ Observe data D = (y, x) = ((yi, x)N,)
» yis the output, x is the location (x; = (x!, x2,..., x?) € RY)

@ Gaussian assumptions imply that marginally for any input x

F(X)[D ~ N (m(x), 32(x)>



Gaussian Processes

Posterior
@ Observe data D = (y, x) = ((vi, x)Y,)
» yis the output, x is the location (x; = (x!, x2,..., x?) € RY)

@ Gaussian assumptions imply that marginally for any input x

F(X)[D ~ N (m(x), 32(x))

@ mand s? are the posterior mean and variance functions

m(x) = e(x)"(C+ =)y, )
$2(x) = C(x, x) — ¢(x)7(C + =) " e(x),
where
¢(x) = (C(x, Xi));<;<n (covariances between x and inputs X)
C = (C(Xi; Xj))1<; j<n (covariances between inputs x) @)

3 = diag (UZ(X,‘)> (diagonal matrix of noise variance)



GP Applications

Common application is in coding problems
@ Typically in a high dimensional setting, or when
@ the code is computationally expensive to run
Examples:

@ Numerical solutions to differential equations
@ Monte Carlo simulation

» Engineering

» Financial math

Also used for spatial modeling
@ Originated in geostatistics (where it was called kriging)
@ Mortality modeling



Quick Motivating Example

Suppose:
@ A computer takes x as an input into a function f with output f(x)

@ Itis computationally expensive for the computer to run this code
(one evaluation takes e.g. 5 hours).



Quick Motivating Example

Suppose:
@ A computer takes x as an input into a function f with output f(x)

@ Itis computationally expensive for the computer to run this code
(one evaluation takes e.g. 5 hours).

Further, suppose:
@ f(x) = sin(x) (for simplicity, but we don’t know this apriori)
@ Want to learn about f(x) over all x € [0, 27].
@ Only have 30 hours (6 runs) to meet a deadline

How can we have a reasonable understanding of the computer
function?



_ Gaussian Processes_Applications VaR (Quantie) Estimaton |
Calibrating f

Use the following strategy:
@ Run f(x) at equally spaced points in [0, 27]
(.e. x;=2nt,i=0,...,5)
e Fit the data (x;, y;)% , to a GP
@ Here, ¢(x) = 0 since the observations are not noisy




Applications

Result

+ Data
~ 4 — GP Model
S sin(x)
> O
o
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_ Gaussian Processes _Applications VaR (Quaniile) Estimation |
Different scenarios

n=6,06=0 n=8,0=0

ate
N —— GP Model
..... singe)

————— 95% Uncertainty Interval -+ 95% Uncertainty Interval
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n=6,0—=0.25 n—=12,0 = 0.25
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Different scenarios

n=20,0=0.25

Data
~ —— GP Model
sin(x)

o
-~ 95% Uncertainty Interval
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_ Gaussian Processes _Applications _VaR (Quaniie) Estimation |
Monte Carlo Applications

@ GP regression is useful in Monte Carlo simulation

@ Conditional expectation (of a Markov process (Z;)) can be written
as
f(z) = Elo(Z7)|Z: = 2],

where we interpret

» Z; is the intermediate time t scenario for the process (Z;),
» Zr is what we are interested in at expiration
» ¢(-) is some function (think payoff)



Monte Carlo Applications

@ GP regression is useful in Monte Carlo simulation

@ Conditional expectation (of a Markov process (Z;)) can be written
as
f(z) = Elo(Z7)|Z: = 2],

where we interpret

» Z; is the intermediate time t scenario for the process (Z;),
» Zr is what we are interested in at expiration
» ¢(-) is some function (think payoff)

f(z) can be estimated via simulation (expensive computer code),
SO we observe
Y(2) = H(2) + €(2),

where €(z) is the Monte Carlo noise whose variance can be easily
estimated!



Monte Carlo

E[¢(Z7)|2: = 2]

can be estimated using Monte Carlo:
@ Simulate Z7 from the distribution of Z7|Z; = z (r times)
» Call the realizations (Z7},...,Z¥).

@ The law of large numbers says

IS o(2h) — Elo(zr)|z = 2
i=1

asr— oo
@ So, for “large” r,

1S o(zh) ~ Elo(z0)|2 = 2]

r
i=1



_ Gaussian Processes _Applications VaR (Quaniile) Estimation |
Monte Carlo

The approximation error is quantified through the variance of
o(Zr)l4i =z
@ var(¢(Zr)|Z: = z) can be estimated by

r r 2
1 o -
6%(2) = 1 > <¢(Z’T) -7 > <I5(Z’T)>
i=1 i=1
o = var (131, ¢(Z})|Z = z) is estimated by 6%(z)/r.

@ So, in the problem
Y(2) = 1(2) + €(2),

&2(z)/r is an appropriate surrogate for the variance of ¢(z).
» uncertainty at z can be decreased by increasing r at that location



Current Publications

Statistical emulators for pricing and hedging longevity risk products
(Risk, Ludkovski (2016)) (Insurance: Mathematics and Economics 68)

@ Longevity risk is a rising problem
» Risk associated with people living too long
@ Stochastic mortality models have recently boomed in popularity

» Provide good fit and projections
» Complicated

* Accurate analysis often requires time consuming nested simulations
@ Pricing many products under stochastic mortality models requires
nested Monte Carlo simulations
» GP assists by fitting at the intermediate time point
* The typical approach is to use numerical approximations
» Outperformed industry standard numerical approximations



Applications

Current Publications
Gaussian Process Models for Mortality Rates and Improvement

Factors (Ludkovski, Risk, Zail (2016))
(https://arxiv.org/abs/1608.08291)

@ Fit (xag, X,r) and y as the mortality rate for ages 50-85, years
1999-2015

@ Produces a mortality surface in age and year
@ Provides easy closed form uncertainty quantification
@ GP is differentiable and remains a GP (depending on covariance
kernel)
» Allows to easily analyze mortality improvement (d%y,f(x))
@ Current trends and models say mortality is decreasing near
uniformly

» Our method predicted the increase for middle ages in 2016
» Other methods did not



VaR (Quantile) Estimation

“Solvency II" Capital Requirements

Recently implemented (March 2015) in Europe for insurance
companies:

@ Banking regulations require Value-At-Risk (VaR) (quantile)
calculations of time T = 1 year loss

» For a given portfolio, what is the 0.5% worst loss that the company
could achieve attime T =17

@ Estimating extreme quantiles is difficult
» Especially with complicated stochastic mortality models
@ Big issue in industry, since most do not know how to accurately
calculate it

@ There is little literature on this topics since it is a new and difficult
problem



Setup (Simplified)

The setup:
@ 2 stocks with prices (S}) and (S?), where t is time
@ Their values can be simulated

@ We own a portfolio that gains value as S; increases and loses
value as S? increases

@ Stock prices can be simulated: (for s < 1)

10g(S1)|Ss ~ N (Iog(Ss) Fr(t—s) - %(03)2, (as)2>



VaR (Quantile) Estimation

Setup (Simplified)

@ f(z', z?) is an unknown function representing the value of a
portfolio at time T = 1
@ Takes in price scenarios
» i.e. Z' represents a possible value for the stock price S at T = 1
@ For given (z', z%), f(z', z?) be estimated to arbitrary degrees of
accuracy (by increasing # of simulations at that location)
@ Interested in the 0.5% percentile of f(S], 52)

» i.e. for N = 10000 generated scenarios of (S}, S2) = (2, %), we
want the 50th lowest value of f(z', z2)



Full Setup

We own 100 call options on S}, and are short 50 call options on S?,
where a call option has value

e BT-0p {(SIT B Ki)+' S{l} '

Therefore, the value of the portfolio at time T = 1 when
(8].82) = (', %) is

f(z',22) =& [e—o-o“ 100 (S; - 40)+

_o20.04)5 <S§ _ 35>+' (S],8%) = (21722)] )

Stock | Position | Initial Price | Strike (K) | Maturity | Volatility
3 100 50 40 2 25%
S? -50 80 85 3 35%

Assume interest rate of 8 = 0.04 and the correlation between S} and S? is p = 0.3



VaR (Quantile) Estimation

The problem

e First, fix Z = (Z], z,?);i?oo as the generated set of future financial
scenarios (realizations of (S}, S2))

@ For a fixed simulation budget Ny, what is the optimal way to
estimate VaR ggs, the 50th lowest value of
f(z!,z?),i=1,...,100007?

e For (z',z2) near to (2!, z2), the approximation quality of f(z', z2)
will improve as the number of replications r; increases at (z;, z2)

° o ° + True 0.005 Scenario
N Vo % o
LE oo
° o ° °

100 150 200 250

50

T T T
20 40 60 80 100 120



VaR (Quantile) Estimation

The problem

@ Best possible way is to throw all N simulations at the true 0.005
scenario
@ But its location is unknown
@ Initially, f knows nothing since we have no data
@ Need an iterative procedure that:
» learns about f in important regions
» increases r; to improve accuracy at important locations (z;, z2)

¢ True 0.005 Scenario

100 150 200 250

50

T T T
20 40 60 80 100 120



VaR (Quantile) Estimation

The problem

@ Industry standard is to allocate all simulations equally
» i.e. each scenario receives Ny,/10000 simulations
» The resulting 50th lowest estimate of 7(z', z?) is the estimate of
VaRo.005.
» This loses a lot of information, since
* Nearby points should behave similarly (this method ignores it)
* Most points are irrelevant and deserve no allocation

o : ¢ True 0.005 Scenario
% o
o
o .
o
° o
o

100 150 200 250

50
|




VaR (Quantile) Estimation

Related ldeas (Contour estimation)

The problem boils down to estimation of L, the level of a contour set
C.={zeZ:1f(z)=L}

where f is fitted via GPs.
@ Investigated in Picheny et. al. (2010)

» Interest lies in understanding C, not L
» Little discussion about how to handle unknown L
» Does not discuss noisy observations



VaR (Quantile) Estimation

Related Ideas (Tail average)

Investigation of the tail average,

1
50 Z f(z), T ={z:f(z) <VaRo.oos}
zel
using GPs is discussed in Liu & Staum (2010)
@ Exact understanding of the contour level is less important

» Misspecification of edge ordering matters less, since most will be
identified correctly and it is an average

@ Methods are elementary, since it is the first application of GP in
this setting

» Can be improved significantly
» Useful as a benchmark



Overall Strategy

@ Step 1. Estimate f at representative regions of Z :
@ Pick 100 scenarios, equally spaced in Z, call them 24
@ Use a small percentage of the budget (5% — 10%) to estimate
f(z),z € Z
e Call the output Dy = (Z,', Vi, 62(21')/”/)/:2,-621
© Fita GP to Dy

o
°© ° * True 0.005 Scenario

ﬁ - oa % o 4 Representative Scenarios
o
e
N
(=]

N D o o
S ° e
e
o |
wn

T T
20 40 60 80 100 120



VaR (Quantile) Estimation

Overall Strategy

@ Sequentially, learn about f in the neighborhood of VaRg gos5
@ Set k = 1. Until budget is depleted, do:
@ Predict f(z)|Dx on all of Z.
@ Estimate VaRy o5 as the 50th ordered prediction
© Allocate simulations to point(s) according to some improvement
criteria

(After Stage 1) Estimated Values of f(z*1, zA2)

+ 0.4%-0.6% Percentile Points

5000

-5000

50 100 150 200 250

T T
60 80 100 120

Total budget Ny = 10000 simulations. After stage 1, Nremaining = 9000.

Risk GP Regression




VaR (Quantile) Estimation

Choosing Locations
@ One improvement criteria is the targeted integrated mean square
error (timse) from Picheny et. al. (2010)
@ L is the current guess for VaRg go5
@ Thetmse at z is

’
tmse(z) : = s2(2) 1 exp [ —

@ ¢ is a quantity parameterizing the uncertainty about L

@ W(z) is a weight function that
» increases both when a location posterior mean close to L, and
» when it has higher posterior variance

Goal: reduce the posterior variance, but do it for points close to L.



VaR (Quantile) Estimation
Improvement Criteria
The timse criteria chooses z € Z to reduce the average tmse over all
zieZ:

10000 .
timse(2) = 5550 Y var(f(z)| 2" = z)W(Z') (5)
i=1

where the notation means the posterior variance of the GP if z is the
point to have additional simulations added
Procedure:

@ Choose z € Z that minimizes (5)

@ Allocate simulations to z

© Fit GP to new data

© Repeat



VaR (Quantile) Estimatio|

True vs Predicted Values of f (N;,; = 10000)

True Values of f(z*1, zA2)

o * 0.4%-0.6% Percentile Points
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GP Regression



VaR (Quantile) Estimation

Final Budget Allocation (Ny; = 10000)

Final Budget Spent per Location

+ >100 Allocations B 1500
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VaR (Quantile) Estimation

Performance of VaR estimator as budget is depleted

VaR Estimate per round

! & VaR Estimate
4 95% Etrror Bar
o | — True Value
Q |
227
] ! !
E ]
o
r @ |
s3]
O i
=] !
=R
C_? 1
T T T T T
2000 4000 6000 8000 10000
Budget Spent

True VaR0.005 = —4631.587



VaR (Quantile) Estimation

Numerical Results
True VaR0.005 = —4631.587

Method Bias vMSE
timse 21.923 69.765
LS 37.357 71.936

Benchmarks

Plain Monte Carlo | -6834.842 11481.18
Simple Two Stage 64.344 123.971
Best Possible 2.421 48.038

Nyt = 10000. Bias and vMSE over 100 macro replications.

@ “LS” — Refers to method discussed in tail average paper (Liu Staum (2010))

@ “Simple Two Stage” — 10% of budget in round 1, then allocate 90% uniformly to
candidate points (those with W(z) > 1075)

@ “Best Possible” — Treats location of 0.5% percentile scenario as known. All of Ny
is used to simulate at that location. This is the theoretical best possible estimate
given the simulation constraint



VaR Conclusion

@ Tackling a brand new problem

@ Taking existing pieces of related problems, rearranging them in a
completely different way

@ New methods form as pros and cons of others emerge
Future Plans

@ Analysis of other improvement criteria
@ Extend to more complicated higher dimensional example



Future Work

Quantile and Level-Set Estimation
@ Literature on GP applications in this area has become popular as
of late
» Applications to engineering, computer science
@ Most works have little to no work done in the case of noisy
observations

» Importance sampling
» Convergence results
» Optimal solutions for given constraints



Future Work

Numerical Solutions to Differential Equations

@ Stochastic differential equations
» Most popular methods use Monte Carlo methods in numerical
solutions
@ Partial differential equations
» Duality between PDE’s and stochastic processes (by Feynman-Kac
formula and others)
» Solution is a conditional expectation that could be approximated by
GPs
» Least-squares regression methods appear for use in solutions
(e.g. Longstaff-Schwarz algorithm)



VaR (Quantile) Estimation
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