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Motivation
Given data, how to fit?
Try simple linear regression
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Motivation

Yi = β0 + β1xi + εi , εi ∼ N(0, σ2)

Parametric - produces line of “best fit," with estimates β̂0, β̂1, σ̂
2.

Assumption on εi ∼ N(0, σ2) yields 95% uncertainty bands
Could change trend function...
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Motivation

Yi = β0 sin(x) + εi , εi ∼ N(0, σ2)

Better
Strong assumption on trend

Risk GP Regression



Gaussian Processes Applications VaR (Quantile) Estimation

Shifting from the parametric model

Consider
Yi = f (xi) + εi

with linear regression
Heavily dependent on correctly choosing basis functions for f (xi)

I How many parameters to choose?
I Should it be a polynomial?

Difficult to analyze trend in higher dimensions
Many practitioners blindly choose linear model
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Basic GP Idea

For the regression problem of fitting (xi , yi)
N
i=1 to

Y = f (x) + ε,

Gaussian Process (GP) regression does the following:
Assume f (x) has no closed parametric form
The sample data is one realization of a “random" function
Finds a distribution over all possible functions f (x) that are
consistent with observed data

I “Output" of the model is a distribution
I Completely data driven
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GP Applied to previous data set
Code input:
gp <- km(formula = ∼1, design = data.frame(x=x),
response = y, nugget.estim=TRUE)
predict(gp,data.frame(x=xmesh))

formula = ∼1 is the trend assumption (i.e. this model assumes no
trend!)
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Random sampling of f
5 Realizations (simulations) of f (x). Analogous to

Flipping a coin
Taking survey data

The initial data is considered as one realization of f

Risk GP Regression



Gaussian Processes Applications VaR (Quantile) Estimation

Technical Details

First, define a Gaussian Process

Definition
(Xt )t∈T is a Gaussian Process if for any finite set of indices t1, . . . , tk ,
the distribution of (Xt1 , . . . ,Xtk ) is multivariate normal.
(Xt ) has a covariance kernel C, and the covariance matrix of
(Xt1 , . . . ,Xtk ) has entries cov(Xti ,Xtj ) = C(ti , tj), i , j = 1, . . . , k . Unless
otherwise specified, the mean is assumed to be 0.
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Technical Details

Gaussian Process regression attacks the problem of analyzing (for
z ∈ Rd )

Y (z) = f (z) + ε(z),

where ε(x) is observation noise, by assuming

f (z) = µ(z) + X (z),

where
µ : Rd → R is a trend function
X is a mean–zero, square–integrable Gaussian process with
covariance kernel C
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Covariance Kernel

The covariance kernel determines how locations affect neighboring
outputs

Common assumption is to use:
I Stationary kernels – it depends only on the increment h = u − v
I Separable kernels – in higher dimensions, the kernel is a tensor

product of 1-d kernels.

For u,v ∈ Rd ,

c(h) := C(u,v) = η2
d∏

j=1

g(hj ; θj),

where h = (h1, . . . ,hd ) = u− v and g is a 1-d covariance kernel.
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Example of covariance Kernel

Example
The Gaussian covariance kernel is defined as

g(h) = exp
(
−h2

2θ2

)
.

Illustrates how quickly covariance decays as the distance h increases.

Risk GP Regression



Gaussian Processes Applications VaR (Quantile) Estimation

Prior Assumptions

The model depends on the following hyperparameters
θ (characteristic length-scales)

I Affects the rate at which spatially distant data has an effect on
output

η2 (process variance)
I Affects overall fluctuation of the function f

σ2 (noise variance)
I Variance of the observation noise ε

These can be prespecified or fitted through MLE (or similar).

An optional trend function µ(·) can be included
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Posterior
Observe data D = (y ,x) = ((yi , xi)

N
i=1)

I y is the output, x is the location (xi = (x1
i , x

2
i , . . . , x

d
i ) ∈ Rd )

Gaussian assumptions imply that marginally for any input x

f (x)|D ∼ N
(

m(x), s2(x)
)

m and s2 are the posterior mean and variance functions{
m(x)

.
= c(x)T (C + Σ)−1y ;

s2(x)
.

= C(x , x)− c(x)T (C + Σ)−1c(x),
(1)

where
c(x) .= (C(x , xi))1≤i≤N (covariances between x and inputs x)

C .
= (C(xi , xj))1≤i,j≤N (covariances between inputs x)

Σ
.
= diag

(
σ2(xi)

)
(diagonal matrix of noise variance)

(2)
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GP Applications

Common application is in coding problems
Typically in a high dimensional setting, or when
the code is computationally expensive to run

Examples:
Numerical solutions to differential equations
Monte Carlo simulation

I Engineering
I Financial math

Also used for spatial modeling
Originated in geostatistics (where it was called kriging)
Mortality modeling
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Quick Motivating Example

Suppose:
A computer takes x as an input into a function f with output f (x)

It is computationally expensive for the computer to run this code
(one evaluation takes e.g. 5 hours).

Further, suppose:
f (x) = sin(x) (for simplicity, but we don’t know this apriori)
Want to learn about f (x) over all x ∈ [0,2π].
Only have 30 hours (6 runs) to meet a deadline

How can we have a reasonable understanding of the computer
function?

Risk GP Regression
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Calibrating f
Use the following strategy:

Run f (x) at equally spaced points in [0,2π]
(i.e. xi = 2π i

5 , i = 0, . . . ,5)
Fit the data (xi , yi)

6
i=0 to a GP

Here, ε(x) ≡ 0 since the observations are not noisy

Risk GP Regression
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Result

Risk GP Regression



Gaussian Processes Applications VaR (Quantile) Estimation

Different scenarios
n = 6, σ = 0 n = 8, σ = 0

n = 6, σ = 0.25 n = 12, σ = 0.25
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Different scenarios
n = 20, σ = 0.25

n = 100, σ = 0.25
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Monte Carlo Applications

GP regression is useful in Monte Carlo simulation
Conditional expectation (of a Markov process (Zt )) can be written
as

f (z) = E[φ(ZT )|Zt = z],

where we interpret
I Zt is the intermediate time t scenario for the process (Zt ),
I ZT is what we are interested in at expiration
I φ(·) is some function (think payoff)

f (z) can be estimated via simulation (expensive computer code),
so we observe

Y (z) = f (z) + ε(z),

where ε(z) is the Monte Carlo noise whose variance can be easily
estimated!

Risk GP Regression
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Monte Carlo

E[φ(ZT )|Zt = z]

can be estimated using Monte Carlo:
Simulate ZT from the distribution of ZT |Zt = z (r times)

I Call the realizations (Z 1
T , . . . ,Z

r
T ).

The law of large numbers says

1
r

r∑
i=1

φ(Z i
T )→ E[φ(ZT )|Zt = z]

as r →∞
So, for “large” r ,

1
r

r∑
i=1

φ(Z i
T ) ≈ E[φ(ZT )|Zt = z]
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Monte Carlo
The approximation error is quantified through the variance of
φ(ZT )|Zt = z

var(φ(ZT )|Zt = z) can be estimated by

σ̂2(z) =
1

r − 1

r∑
i=1

(
φ(Z i

T )− 1
r

r∑
i=1

φ(Z i
T )

)2

⇒ var
(1

r
∑r

i=1 φ(Z i
T )|Zt = z

)
is estimated by σ̂2(z)/r .

So, in the problem
Y (z) = f (z) + ε(z),

σ̂2(z)/r is an appropriate surrogate for the variance of ε(z).
I uncertainty at z can be decreased by increasing r at that location
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Current Publications

Statistical emulators for pricing and hedging longevity risk products
(Risk, Ludkovski (2016)) (Insurance: Mathematics and Economics 68)

Longevity risk is a rising problem
I Risk associated with people living too long

Stochastic mortality models have recently boomed in popularity
I Provide good fit and projections
I Complicated

F Accurate analysis often requires time consuming nested simulations

Pricing many products under stochastic mortality models requires
nested Monte Carlo simulations

I GP assists by fitting at the intermediate time point
F The typical approach is to use numerical approximations

I Outperformed industry standard numerical approximations
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Current Publications
Gaussian Process Models for Mortality Rates and Improvement
Factors (Ludkovski, Risk, Zail (2016))
(https://arxiv.org/abs/1608.08291)

Fit (xag , xyr ) and y as the mortality rate for ages 50–85, years
1999-2015
Produces a mortality surface in age and year
Provides easy closed form uncertainty quantification
GP is differentiable and remains a GP (depending on covariance
kernel)

I Allows to easily analyze mortality improvement ( d
dxyr

f (x))

Current trends and models say mortality is decreasing near
uniformly

I Our method predicted the increase for middle ages in 2016
I Other methods did not
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“Solvency II" Capital Requirements

Recently implemented (March 2015) in Europe for insurance
companies:

Banking regulations require Value-At-Risk (VaR) (quantile)
calculations of time T = 1 year loss

I For a given portfolio, what is the 0.5% worst loss that the company
could achieve at time T = 1?

Estimating extreme quantiles is difficult
I Especially with complicated stochastic mortality models

Big issue in industry, since most do not know how to accurately
calculate it
There is little literature on this topics since it is a new and difficult
problem
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Setup (Simplified)

The setup:
2 stocks with prices (S1

t ) and (S2
t ), where t is time

Their values can be simulated
We own a portfolio that gains value as S1

t increases and loses
value as S2

t increases
Stock prices can be simulated: (for s < t)

log(St )|Ss ∼ N
(

log(Ss) + r(t − s)− 1
2

(σS)2, (σS)2
)

Risk GP Regression
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Setup (Simplified)

f (z1, z2) is an unknown function representing the value of a
portfolio at time T = 1
Takes in price scenarios

I i.e. z i represents a possible value for the stock price Si
T at T = 1

For given (z1, z2), f (z1, z2) be estimated to arbitrary degrees of
accuracy (by increasing # of simulations at that location)
Interested in the 0.5% percentile of f (S1

1 ,S
2
1)

I i.e. for N = 10000 generated scenarios of (S1
1 ,S

2
1) = (z1, z2), we

want the 50th lowest value of f (z1, z2)

Risk GP Regression
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Full Setup
We own 100 call options on S1

t , and are short 50 call options on S2
t ,

where a call option has value

e−β(T−t)E
[(

Si
T − K i

)
+

∣∣∣∣Si
t

]
.

Therefore, the value of the portfolio at time T = 1 when
(S1

1 ,S
2
1) = (z1, z2) is

f (z1, z2) := E
[
e−0.04 100

(
S1

2 − 40
)

+

−e−2(0.04)50
(

S2
3 − 85

)
+

∣∣∣∣ (S1
1 ,S

2
1) = (z1, z2)

]
. (3)

Stock Position Initial Price Strike (K ) Maturity Volatility
S1 100 50 40 2 25%
S2 -50 80 85 3 35%

Assume interest rate of β = 0.04 and the correlation between S1
t and S2

t is ρ = 0.3
Risk GP Regression



Gaussian Processes Applications VaR (Quantile) Estimation

The problem
First, fix Z =

(
z1

i , z
2
i
)10000

i=1 as the generated set of future financial
scenarios (realizations of (S1

1 ,S
2
1))

For a fixed simulation budget Ntot , what is the optimal way to
estimate VaR0.005, the 50th lowest value of
f (z1

i , z
2
i ), i = 1, . . . ,10000?

For (z1, z2) near to (z1
i , z

2
i ), the approximation quality of f (z1, z2)

will improve as the number of replications ri increases at (z1
i , z

2
i )
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Gaussian Processes Applications VaR (Quantile) Estimation

The problem
Best possible way is to throw all Ntot simulations at the true 0.005
scenario
But its location is unknown
Initially, f knows nothing since we have no data
Need an iterative procedure that:

I learns about f in important regions
I increases ri to improve accuracy at important locations (z1

i , z
2
i )

Risk GP Regression
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The problem
Industry standard is to allocate all simulations equally

I i.e. each scenario receives Ntot/10000 simulations
I The resulting 50th lowest estimate of f (z1, z2) is the estimate of

VaR0.005.
I This loses a lot of information, since

F Nearby points should behave similarly (this method ignores it)
F Most points are irrelevant and deserve no allocation
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Related Ideas (Contour estimation)

The problem boils down to estimation of L, the level of a contour set

C := {z ∈ Z : f (z) = L}

where f is fitted via GPs.
Investigated in Picheny et. al. (2010)

I Interest lies in understanding C, not L
I Little discussion about how to handle unknown L
I Does not discuss noisy observations
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Related Ideas (Tail average)

Investigation of the tail average,

1
50

∑
z∈Γ

f (z), Γ = {z : f (z) ≤ VaR0.005}

using GPs is discussed in Liu & Staum (2010)
Exact understanding of the contour level is less important

I Misspecification of edge ordering matters less, since most will be
identified correctly and it is an average

Methods are elementary, since it is the first application of GP in
this setting

I Can be improved significantly
I Useful as a benchmark
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Overall Strategy
Step 1. Estimate f at representative regions of Z :

1 Pick 100 scenarios, equally spaced in Z, call them Z1
2 Use a small percentage of the budget (5% – 10%) to estimate

f (z), z ∈ Z1
3 Call the output D1 = (zi , yi , σ̂

2(zi )/ri )i:zi∈Z1
4 Fit a GP to D1
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Overall Strategy
Sequentially, learn about f in the neighborhood of VaR0.005
Set k = 1. Until budget is depleted, do:

1 Predict f (z)|Dk on all of Z.
2 Estimate VaR0.005 as the 50th ordered prediction
3 Allocate simulations to point(s) according to some improvement

criteria

Total budget Ntot = 10000 simulations. After stage 1, Nremaining = 9000.
Risk GP Regression
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Choosing Locations
One improvement criteria is the targeted integrated mean square
error (timse) from Picheny et. al. (2010)
L is the current guess for VaR0.005

The tmse at z is

tmse(z) : = s2(z)
1√

2π(s2(z) + ε2)
exp

−1
2

(
m(z)− L√
s2(z) + ε2

)2
 (4)

= s2(z)W (z),

ε is a quantity parameterizing the uncertainty about L
W (z) is a weight function that

I increases both when a location posterior mean close to L, and
I when it has higher posterior variance

Goal: reduce the posterior variance, but do it for points close to L.
Risk GP Regression
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Improvement Criteria

The timse criteria chooses z ∈ Z to reduce the average tmse over all
zi ∈ Z:

timse(z) :=
1

10000

10000∑
i=1

var(f (zi)|znew = z)W (z i) (5)

where the notation means the posterior variance of the GP if z is the
point to have additional simulations added

Procedure:
1 Choose z ∈ Z that minimizes (5)
2 Allocate simulations to z
3 Fit GP to new data
4 Repeat

Risk GP Regression
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True vs Predicted Values of f (Ntot = 10000)
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Final Budget Allocation (Ntot = 10000)
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Performance of VaR estimator as budget is depleted

True VaR0.005 = −4631.587
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Numerical Results
True VaR0.005 = −4631.587

Method Bias
√

MSE
timse 21.923 69.765
LS 37.357 71.936

Benchmarks
Plain Monte Carlo -6834.842 11481.18
Simple Two Stage 64.344 123.971
Best Possible 2.421 48.038

Ntot = 10000. Bias and
√

MSE over 100 macro replications.

“LS” – Refers to method discussed in tail average paper (Liu Staum (2010))
“Simple Two Stage” – 10% of budget in round 1, then allocate 90% uniformly to
candidate points (those with W (z) > 10−5)
“Best Possible” – Treats location of 0.5% percentile scenario as known. All of Ntot

is used to simulate at that location. This is the theoretical best possible estimate
given the simulation constraint
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VaR Conclusion

Tackling a brand new problem
Taking existing pieces of related problems, rearranging them in a
completely different way
New methods form as pros and cons of others emerge

Future Plans
Analysis of other improvement criteria
Extend to more complicated higher dimensional example
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Future Work

Quantile and Level-Set Estimation
Literature on GP applications in this area has become popular as
of late

I Applications to engineering, computer science
Most works have little to no work done in the case of noisy
observations

I Importance sampling
I Convergence results
I Optimal solutions for given constraints
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Future Work

Numerical Solutions to Differential Equations
Stochastic differential equations

I Most popular methods use Monte Carlo methods in numerical
solutions

Partial differential equations
I Duality between PDE’s and stochastic processes (by Feynman-Kac

formula and others)
I Solution is a conditional expectation that could be approximated by

GPs
I Least-squares regression methods appear for use in solutions

(e.g. Longstaff-Schwarz algorithm)
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