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What Is A Kernel?

Statistics and Probability:
1 The kernel of a pdf (or pmf)

2 Kernel Density Estimation

3 Support Vector Machines

4 Kernel Ridge Regression

5 Kernel PCA

6 Covariance kernels in Gaussian processes

Mathematics:
1 Kernel of a linear map (aka null space)

2 Integral transform T

(Tf )(u) =

∫ t2

t1

f (t)K (t, u)dt,

where K (t, u) is a kernel

e.g. Fourier transform: K (t, u) = e−2πiut

3 Reproducing Kernel Hilbert Spaces (RKHS)
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Reproducing Kernel Hilbert Space

Definition (Reproducing Kernel Hilbert Space)
a Let H be a Hilbert space of real functions f defined on X . Then H is
called a reproducing kernel Hilbert space endowed with an inner product
〈X ,X〉H (and norm ‖f ‖H =

√
〈f , f 〉H) if there exists a function

k : X × X → R with the following properties:

1 for every x , k(x , x ′) as a function of x ′ belongs to H, and

2 k has the reproducing property 〈f (·), k(·, x)〉H = f (x).

aFrom Rasmussen & Williams, Gaussian Processes for Machine Learning
2006

‖f ‖2
H can be thought of as a generalization (to functions) of the

Mahalanobis norm ‖y‖2
Σ = y>Σ−1y.

The second item is called the reproducing property (will become
clear in the representer theorem)
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Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn Theorem (Aronszajn 1950))

For every symmetric and positive definite function k(·, ·) on X × X there
exists a unique RKHS, and vice versa.

Ensures that defining a symmetric, positive definite function1 (aka a
kernel) yields a unique RKHS.

1discussed on next slide
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Positive Definite Function

Definition

Suppose k : X × X → R. Then k is a positive definite function if for all
n ∈ N, and x = [x1, . . . , xn]> where each xi ∈ X and
c = [c1, . . . , cn]> ∈ Rn, we have

c>Kc ≥ 0,

where K is the n × n matrix with entries Kij = k(xi , xj).

Functional generalization of a semi-positive definite2 matrix:

x>Σx ≥ 0, ∀x ∈ Rd

2for some reason, the “function” definition does not distinguish between
semi-positive definite and positive definite; a positive definite matrix satisfies x>Σx > 0.
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Additional Results

Theorem (Corollary of Mercer’s Theorem)

If k is a symmetric positive definite function, then there exists an inner
product space V and a feature map φ such that k(x, x′) = 〈φ(x), φ(x′)〉V .

Theorem (Bochner’s Theorem)

A stationary function k(x , x ′) = k̃(|x − y |) is positive definite if and only if
k̃ can be represented as

k̃(t) =

∫
R

e itxdµ(x),

where µ is a probability measure.
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Representer Theorem (Motivation)

Suppose

x1, . . . , xn ∈ X
y1, . . . , yn ∈ Rd

f : X → Rd

Interpretation:

observe pairs of data (x1, y1), . . . , (xn, yn),

want to recover an unknown function f from the data

Example:
f (x) = y + ε (regression)

Problem:

How to choose f ?
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Choosing f (Issues)

What f is appropriate here?
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Choosing f (Issues)
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Choosing f (Issues)

Perturb the data slightly...

xnew = xold + 0.05εx , , ynew = yold + 0.05εy , εx , εy ∼ N(0, 1)
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Representer Theorem (pt 1)

Define

J[f ] = Q(y , f ) + λ‖f ‖2
H

Q(y , f ) is a data-fit term (squared error loss, negative log likelihood, etc.)

λ‖f ‖2
H is the regularizer term

Represents smoothness assumptions on f as encoded by a suitable
RKHS
λ ∈ R+ is a penalty factor

Theorem (Representer Theorem)

Let H be a RKHS. Each minimizer f ∈ H of J[f ] has the form

f (x) =
n∑

i=1

αik(x , xi )

for some α1, . . . , αn.
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Representer Theorem (Specific Cases)

J[f ] = Q(y , f ) + λ‖f ‖2
H

Least Squares Ridge Regression (f (xi ) = β>xi )

J[f ] =
n∑

i=1

(yi − β>xi )
2 + λ‖β‖2

2 (squared error loss)

Support Vector Machines

J[f ] =
n∑

i=1

max(0, 1− yi (w
>xi − b)) + λ‖w‖2

2 (hinge loss)

Gaussian Process Regression

J[f ] =
1

2σ2

n∑
i=1

(yi − f (xi ))2 +
1

2
‖f ‖2
H (Gaussian likelihood)
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Using the Representer Theorem (RKHS Norm)

Representer Theorem: The minimizer has form
f (x) =

∑n
i=1 αik(x, xi )

Reproducing Property: 〈k(·, xi ), k(·, xj)〉H = k(xi , xj)

‖f ‖H = ‖f (·)‖H =

∥∥∥∥∥
n∑

i=1

αik(·, xi )

∥∥∥∥∥
H

(representer theorem)

=

〈
n∑

i=1

αik(·, xi ),
n∑

j=1

αjk(·, xj)

〉
H

(write as inner product)

=
n∑

i=1

n∑
j=1

αiαj〈k(·, xi ), k(·, xj)〉H (inner product bilinearity)

=
n∑

i=1

n∑
j=1

αiαjk(xi , xj) (reproducing property)

= α>Kα
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Using the Representer Theorem (GP Case)

In Gaussian Process Regression:

J[f ] =
1

2σ2

n∑
i=1

(yi − f (xi ))2 +
1

2
‖f ‖2
H

=
1

2σ2
(y − Kα)>(y − Kα) +

1

2
α>Kα

=
1

2
α>
(
K +

1

2σ2
K>K

)
α− 1

2σ2
y>Kα +

1

2σ2
y>y

Minimize J with respect to α = [α1, . . . , αn]>:

⇒ α̂ = (K + σ2I )−1y

⇒ f̂ (x∗) =
n∑

i=1

α̂ik(x∗, xi ) = k(x∗)
>(K + σ2I )−1y

where k(x∗) = [k(x∗, x1), . . . , k(x∗, xn)]>.
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Recap: Kernel Method Roadmap

Goal: recover f from data (x1, y1), . . . , (xn, yn)

1 Choose a kernel (symmetric, positive definite function)

Imposes restrictions on f

2 Representer theorem ensures a minimizer to the penalized
minimization problem

J[f ] = Q(y , f ) + λ‖f ‖2
H
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Two Common Kernel Methods

Gaussian Process Regression: k(x, x′) = cov(f (x), f (x′))

Support Vector Machines: maps input space into feature space:

k(x, x′) = 〈φ(x), φ(x′)〉V

where φ : X → V is a map that transforms the input data to be more
appropriate to the task at hand

Can be done with Mercer’s theorem by choosing an appropriate kernel
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Focus on Gaussian Processes

In this work we focus on Gaussian process regression

Kernels have similar interpretation in other methods (e.g. support
vector machines, kernel ridge regression, kernel PCA)
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Gaussian Process Interlude

Definition (Gaussian Process)

Let f : X → R. Then f is a Gaussian process if for all n ∈ N, the vector
[f (x1), . . . , f (xn)]> is multivariate normal.

Specified by

mean function µ: E[f (x)] = µ(x)
covariance kernel k : cov(f (x), f (x ′)) = k(x , x ′)

Generalization of a multivariate normal distribution to infinite
dimensional indices

The covariance kernel k is crucial – it determines underlying properties of
f considering it as a function of x, e.g.

continuity,

differentiability,

overall shape (linear? polynomial? periodic?)

Dr. Jimmy Risk Cal Poly Pomona The Role of a Kernel in Statistical Learning 4/6/21 18 / 1
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Gaussian Process Regression

Given data (x1, y1), . . . , (xn, yn), assume

1 yi = f (xi ) + εi , εi
iid∼ N(0, σ2)

2 f is a Gaussian process with mean function µ and covariance kernel k

Without loss of generality, assume µ = 0

Then if x∗ is a test point, [y1, . . . , yn, f (x∗)]> is multivariate normal and
thus

f (x∗)|y1, . . . , yn ∼ N(m(x∗), s(x∗, x∗))

where

m(x∗) = k(x∗)
> [K + σ2I

]−1
y ,

s(x∗, x∗) = k(x∗, x∗)− k(x∗)
> [K + σ2I

]−1
k(x∗)
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Consistency With Representer Theorem

Using Q(y , f ) = 1
2σ2

∑n
i=1(yi − f (xi ))2 (Gaussian likelihood)

posterior mean function m is the minimizer of J[f ], i.e.

m = argminf ∈H J[f ] = argminf ∈H

{
Q(y , f ) +

1

2
‖f ‖2
H

}
Hence:

Conditions on the covariance kernel k determines behavior of the
posterior mean function

The posterior Gaussian process f itself (i.e. with mean function m and
covariance kernel s(·, ·)) has slightly different, but related properties

In other settings, e.g. support vector machines, replace m with the (kevin’s
thesis?)

Dr. Jimmy Risk Cal Poly Pomona The Role of a Kernel in Statistical Learning 4/6/21 20 / 1
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The Punchline

The kernel determines several properties of the statistical problem at
hand

The following slides provide examples of commonly used kernels,
along with some real world examples

Dr. Jimmy Risk Cal Poly Pomona The Role of a Kernel in Statistical Learning 4/6/21 21 / 1
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Common Kernels (Squared Exponential Kernel)

Let x , x ′ ∈ R for simplicity
Squared Exponential Kernel3

kSE(x , x ′) = η2 exp

(
− (x − x ′)2

2`2

)
` is a lengthscale that determines the length of information borrowing in the
function.
η2 determines the average distance the function is away from its mean.
Gaussian processes with this kernel are infinitely differentiable.

` = 0.857 ` = 0.163

3also called the radial basis function kernel, or Gaussian kernel
Dr. Jimmy Risk Cal Poly Pomona The Role of a Kernel in Statistical Learning 4/6/21 22 / 1
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Common Kernels (Linear Kernel)

Linear Kernel

kLin(x , x ′) = σ2
b + σ2

v (x − c)(x ′ − c)

The offset c determines the x-coordinate of the point that all lines in the
posterior go through
The constant variance σ2

b determines how far from 0 the height of the
function will be at x = 0.
Gaussian processes with this kernel corresponds exactly with Bayesian linear
regression
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Common Kernels (Matérn Kernel)

Matérn

kMat(x , x
′; ν) =

η2

Γ(ν)2ν−1

(√
2ν

`
|x − x ′|

)ν

Kν

(√
2ν

`
|x − x ′|

)
Where Γ(·) is the gamma function and Kν(·) is a modified Bessel
function

` is a lengthscale
ν controls the smoothness of f

The resulting Gaussian process is ν−times differentiable
e.g. ν = 2.5⇒ f is 2 times differentiable, ν = 0.5⇒ f is not
differentiable

ν = 2.5 ν = 0.5
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Common Kernels (Periodic)

Periodic Kernel

kPer(x , x
′) = η2 exp

(
−2 sin2(π|x − x ′|/p)

`2

)
Where Γ(·) is the gamma function and Kν(·) is a modified Bessel
function

` is a lengthscale
p determines the period (distance between repeating patterns of the function)
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More Complex Kernels

Changepoint Kernels
Expresses change from one kernel to another

Heteroskedastic Kernel
Automatically accounts for varying noise amplitude

Translation and Rotation Invariant Kernels
Useful with image data

See Automatic Model Construction with Gaussian Processes by
Duvenaud for more examples and thorough discussion:
https://www.cs.toronto.edu/ duvenaud/thesis.pdf

Dr. Jimmy Risk Cal Poly Pomona The Role of a Kernel in Statistical Learning 4/6/21 26 / 1
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Constructing New Kernels

Two common ways to construct new kernels:

Adding two kernels yields a kernel4

ka+b(x , x ′) = ka(x , x ′) + kb(x , x ′)

Multiplying two kernels yields a kernel

ka·b(x , x ′) = ka(x , x ′) · kb(x , x ′)

4recall by kernel, we mean a symmetric and positive definite function k : X ×X → R
Dr. Jimmy Risk Cal Poly Pomona The Role of a Kernel in Statistical Learning 4/6/21 27 / 1
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Additive Kernel (Interpretation)

In a Gaussian process, if

f1 ∼ GP(µ1, k1)

f2 ∼ GP(µ2, k2)

Then

f1 + f2 ∼ GP(µ1 + µ2, k1 + k2).

Dr. Jimmy Risk Cal Poly Pomona The Role of a Kernel in Statistical Learning 4/6/21 28 / 1
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Kernel Multiplication and Dimensionality

If x = [x (1), · · · , x (d)]> ∈ Rd , it may make sense to define

k(x, x′) =
d∏

j=1

kj(x
(j), x ′(j))

Example. Suppose [x (1), x (2)]> ∈ R2 where

x (1) represents an individuals age, and
x (2) represents the current calendar year.

k(x, x′) = k1(x (1), x ′(1)) · k2(x (2), x ′(2))

For example

k(x, x′) = η2 exp

(
−|x (1) − x ′(1)|2

2`age

)
· exp

(
−|x (2) − x ′(2)|2

2`year

)
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Anecdotal Example Of Kernel Abuse
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SVM Classification

SVM is generally a classification method.
Task:

Decide a rule that labels a point to be purple or yellow.

The mechanics of the rule with SVM are dependent on the kernel
chosen.
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Linear Decision Boundary

Choosing the linear kernel yields a linear decision boundary:

k(x , x ′) = x>x ′
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“Circular” Decision Boundary

A linear decision boundary is not appropriate here...
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“Circular” Decision Boundary

The radial basis function kernel gives a decision boundary based on
“closeness” of points

k(x , x ′) = exp

(
−‖x − x ′‖2

2θ2

)
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Example: Mauna Loa Data Set

y : monthly average atmospheric CO2 concentrations (in ppm by
volume) derived from air samples at the Mauna Loa Observatory,
Hawaii, between 1958 and 2003, with some missing values

x : month

Goal: model f (x)
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Example: Mauna Loa Data Set (Kernel Choice)

Model the apparent features5:

Long term rising trend

k1(x , x ′) = θ2
1 exp

(
− (x − x ′)2

2θ2
2

)
where θ1 is the amplitude, and θ2 is the characteristic length-scale

Yearly decaying periodicity

k2(x , x ′) = θ2
3 exp

(
− (x − x ′)2

2θ2
4

)
exp

(
−2 sin2(π(x − x ′))

2θ2
5

)
where θ3 is the magnitude, θ4 is the decay-time, and θ5 is the smoothness of the
periodic component.

5This particular construction is taken from Gaussian Processes for Machine Learning
by Rasmussen and Williams
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DR
AF
T

Example: Mauna Loa Data Set (Kernel Choice)

Model the apparent features5:

Long term rising trend

k1(x , x ′) = θ2
1 exp

(
− (x − x ′)2

2θ2
2

)
where θ1 is the amplitude, and θ2 is the characteristic length-scale

Yearly decaying periodicity

k2(x , x ′) = θ2
3 exp

(
− (x − x ′)2

2θ2
4

)
exp

(
−2 sin2(π(x − x ′))

2θ2
5

)
where θ3 is the magnitude, θ4 is the decay-time, and θ5 is the smoothness of the
periodic component.

5This particular construction is taken from Gaussian Processes for Machine Learning
by Rasmussen and Williams
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Example: Mauna Loa Data Set (Kernel Choice, Continued)

(Small) medium term irregularities

k3(x , x ′) = θ2
6

(
1 +

(x − x ′)2

2θ8θ2
7

)−θ8

where θ6 is the magnitude, θ7 is the typical length-scale, and θ8 is the shape
parameter

Noise term

k4(x , x ′) = θ2
9 exp

(
− (x − x ′)2

2θ2
10

)
+ θ2

11δx=x′ ,

where θ9 is the magnitude of the correlated noise component, θ10 is its
length-scale, and θ11 is the magnitude of the independent noise component.

Final covariance function:

k(x , x ′) = k1(x , x ′) + k2(x , x ′) + k3(x , x ′) + k4(x , x ′)
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Example: Mauna Loa Data Set (Kernel Choice, Continued)
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7
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9 exp

(
− (x − x ′)2

2θ2
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Example: Mauna Loa Data Set (Posterior Prediction)

Learned kernel:

2.63**2 * RBF(length_scale=51.6) +

0.155**2 * RBF(length_scale=91.5) * ExpSineSquared(length_scale=1.48,

periodicity=1) +

0.0314**2 * RationalQuadratic(alpha=2.89, length_scale=0.968) +

0.011**2 * RBF(length_scale=0.122) + WhiteKernel(noise_level=0.000126)
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Duvenaud’s Thesis (Part 1)

Automatic Model Construction with Gaussian Processes by Duvenaud
gives an algorithm that searches over kernel combinations and expresses
the structure discovered

Example6

6Figures are taken from Duvenaud
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Duvenaud’s Thesis (Part 2)
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Ongoing and Completed Projects (Part 1)

Gaussian Process Models for Computer Vision (Student Thesis (Hakeem
Frank))

Comparing classification metrics in changing kernels (using a GP classifier), in
three settings: handwritten digit classification, object detection (airplane or not),
brain scans (tumor detection)

Found that results varied heavily among using polynomial, linear, and squared
exponential kernels

Sample table (handwritten digit classification)
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Ongoing and Completed Projects (Part 2)

Kernel Selection in Gaussian Process Superresolution (Student Thesis
(Charles Amelin))

Comparing kernels in image ”superresolution” techniques

Current literature almost exclusively uses squared exponential kernel

Preliminary results show that images with sharp details (e.g. corners of stairs) are
upscaled with better details in more relaxed kernels (e.g. Matérn kernel)
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Ongoing and Completed Projects (Part 3)

Kernel Selection in Multipopulation Mortality Modelling

Idea: use a special kernel that allows for vector-valued functions

Model multi-population mortality through latent GP’s

Example.
fUSA,M(x) = a1,1u1(x) + a1,2u2(x) + a1,3u3(x)

fUSA,F(x) = a2,1u1(x) + a2,2u2(x) + a2,3u3(x)

fJPN,M(x) = a3,1u1(x) + a3,2u2(x) + a3,3u3(x)

fJPN,F(x) = a4,1u1(x) + a4,2u2(x) + a4,3u3(x)

Model latent GPs [u1(x), u2(x), u3(x)]> as a vector-valued GP

ai,j coefficients are hyperparameters

Latent GPs can express unique fundamental mortality structures through
different kernels

There exists a tensor covariance structure which significantly reduces fitting
time
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Conclusion

Kernel methods are gaining in popularity

Kernel choice is a nontrivial topic

If there is domain knowledge, the modeler can use this in choosing a
kernel
If there is no domain knowledge, the modeler can try different kernels
similarly to model selection
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