The Role of a Kernel in Statistical Learning
Dr. Jimmy Risk
Cal Poly Pomona
4/6/21

Dr. Jimmy Risk Cal Poly Pomona

4/6/21

€⊡

What Is A Kernel?

Statistics and Probability:

- **1** The kernel of a pdf (or pmf)
- ² Kernel Density Estimation
- **3** Support Vector Machines
- **4** Kernel Ridge Regression
- **5** Kernel PCA
- ⁶ Covariance kernels in Gaussian processes

Mathematics:

¹ Kernel of a linear map (aka null space)

Integral transform T

Maximum

\nhines

\nap (aka null space)

\n
$$
(Tf)(u) = \int_{t_1}^{t_2} f(t)K(t, u)dt,
$$

where $K(t, u)$ is a **kernel** e.g. Fourier transform: $K(t,u)=e^{-2\pi iut}$ Reproducing Kernel Hilbert Spaces (RKHS)

What Is A Kernel?

Statistics and Probability:

- **1** The kernel of a pdf (or pmf)
- ² Kernel Density Estimation
- **3** Support Vector Machines
- **4** Kernel Ridge Regression
- **5** Kernel PCA
- ⁶ Covariance kernels in Gaussian processes

Mathematics:

- **1** Kernel of a linear map (aka null space)
- 2 Integral transform T

Equation

\nn Gaussian processes

\nap (aka null space)

\n
$$
(Tf)(u) = \int_{t_1}^{t_2} f(t)K(t, u)dt,
$$

where $K(t, u)$ is a **kernel**

e.g. Fourier transform: $K(t,u)=e^{-2\pi iut}$

3 Reproducing Kernel Hilbert Spaces (RKHS)

Definition (Reproducing Kernel Hilbert Space)

Figure 1 The Hilbert space endowed with $\|\mu = \sqrt{\langle f, f \rangle_{\mathcal{H}}}$ if there exists
the following properties:
) as a function of x' belongs to
cing property $\langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} =$
Illiams, Gaussian Processes for Machin ^a Let H be a Hilbert space of real functions f defined on \mathcal{X} . Then H is called a reproducing kernel Hilbert space endowed with an inner product $\langle\mathcal{X},\mathcal{X}\rangle_{\mathcal{H}}$ (and norm $\|f\|_{\mathcal{H}}=\sqrt{\langle f,f\rangle_{\mathcal{H}}}$) if there exists a function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with the following properties:

 \bullet for every $x, k(x, x')$ as a function of x' belongs to $\mathcal H$, and

2 k has the reproducing property $\langle f(\cdot), k(\cdot, x)\rangle_{\mathcal{H}} = f(x)$.

^aFrom Rasmussen & Williams, Gaussian Processes for Machine Learning 2006

- $\|f\|_{\mathcal{H}}^2$ can be thought of as a generalization (to functions) of the Mahalanobis norm $||y||^2_{\Sigma} = y^{\top} \Sigma^{-1} y$.
- The second item is called the reproducing property (will become clear in the representer theorem)

 Ω

(ロト (母) (ミ) (

Definition (Reproducing Kernel Hilbert Space)

Figure 1 The Hilbert space endowed with
 $\|\mu = \sqrt{\langle f, f \rangle_{\mathcal{H}}}$ if there exists

the following properties:

) as a function of x' belongs to

cing property $\langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} =$

Illiams, Gaussian Processes for Machin
 ^a Let H be a Hilbert space of real functions f defined on X. Then H is called a reproducing kernel Hilbert space endowed with an inner product $\langle\mathcal{X},\mathcal{X}\rangle_{\mathcal{H}}$ (and norm $\|f\|_{\mathcal{H}}=\sqrt{\langle f,f\rangle_{\mathcal{H}}}$) if there exists a function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with the following properties:

 \bullet for every $x, k(x, x')$ as a function of x' belongs to $\mathcal H$, and

2 k has the reproducing property $\langle f(\cdot), k(\cdot, x)\rangle_{\mathcal{H}} = f(x)$.

^aFrom Rasmussen & Williams, Gaussian Processes for Machine Learning 2006

- $\|f\|_{\mathcal{H}}^2$ can be thought of as a generalization (to functions) of the Mahalanobis norm $||y||^2_{\Sigma} = y^{\top} \Sigma^{-1} y$.
- The second item is called the **reproducing property** (will become clear in the representer theorem)

Theorem (Moore-Aronszajn Theorem (Aronszajn 1950))

For every symmetric and positive definite function $k(\cdot, \cdot)$ on $\mathcal{X} \times \mathcal{X}$ there exists a unique RKHS, and vice versa.

nszajn Theorem (Aronszajn 1:
nd positive definite function k(·,
and vice versa.
ing a symmetric, positive definit
ique RKHS. Ensures that defining a symmetric, positive definite function 1 (aka a kernel) yields a unique RKHS.

¹discussed on next slide

つひひ

Definition

In: Then *K* is a positive definite
 $\sum_{i=1}^{n} x_i = kx_i$ and
 $\sum_{i=1}^{n} x_i = k^T x_i$ and
 $\sum_{i=1}^{n} x_i = k^T x_i$ with entries $K_{ij} = k(x_i, x_j)$

ization of a semi-positive definities Suppose $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Then k is a positive definite function if for all $n \in \mathbb{N}$, and $x = [x_1, \ldots, x_n]^\top$ where each $x_i \in \mathcal{X}$ and $\pmb{c} = [\pmb{c}_1, \ldots, \pmb{c}_n]^\top \in \mathbb{R}^n$, we have

 c^\top K $c\geq 0,$

where K is the $n \times n$ matrix with entries $\mathsf{K}_{ij} = k(\mathsf{x}_i, \mathsf{x}_j).$

• Functional generalization of a semi-positive definite² matrix:

$$
x^{\top} \Sigma x \ge 0, \qquad \forall x \in \mathbb{R}^d
$$

 2 for some reason, the "function" definition does not distinguish between semi-positive defi[nit](#page-5-0)e and positive definite; a positive definite [matrix satisfies](#page-0-0) $\mathbf{X}^\top \mathbf{\Sigma} \mathbf{x} > 0.$ $\mathbf{X}^\top \mathbf{\Sigma} \mathbf{x} > 0.$

Theorem (Corollary of Mercer's Theorem)

itive definite function, then then
feature map ϕ such that $k(x, x)$
Theorem)
 $(x, x') = \tilde{k}(|x - y|)$ is positive domains $\tilde{k}(t) = \int e^{itx} d\mu(x),$ If k is a symmetric positive definite function, then there exists an inner product space V and a feature map ϕ such that $k(\mathsf{x},\mathsf{x}') = \langle \phi(\mathsf{x}), \phi(\mathsf{x}') \rangle_V$.

Theorem (Bochner's Theorem)

A stationary function $k(x,x')=\tilde{k}(|x-y|)$ is positive definite if and only if k can be represented as

$$
\tilde{k}(t)=\int_{\mathbb{R}}e^{itx}d\mu(x),
$$

where μ is a probability measure.

つひひ

Representer Theorem (Motivation)

Suppose

- \bullet $x_1, \ldots, x_n \in \mathcal{X}$
- $y_1,\ldots,y_n\in\mathbb{R}^d$
- o $f: \mathcal{X} \to \mathbb{R}^d$

Interpretation:

- observe pairs of data $(x_1, y_1), \ldots, (x_n, y_n)$,
- ita $(x_1, y_1), \ldots, (x_n, y_n),$
i unknown function f from the
 $f(x) = y + \epsilon$ \bullet want to recover an unknown function f from the data

Example:

$$
f(x) = y + \epsilon
$$
 (regression)

Problem:

 \bullet How to choose f ?

Choosing f (Issues)

€⊡

What f is appropriate here?

Choosing f (Issues)

x

Þ J.

不重

Choosing f (Issues)

Perturb the data slightly...

 $x_{new} = x_{old} + 0.05\epsilon_x$, $y_{new} = y_{old} + 0.05\epsilon_y$, $\epsilon_x, \epsilon_y \sim N(0, 1)$

Dr. Jimmy Risk Cal Poly Pomona [The Role of a Kernel in Statistical Learning](#page-0-0) $4/6/21$ 10 / 1

Representer Theorem (pt 1)

Define

$$
J[f] = Q(y, f) + \lambda ||f||^2_{\mathcal{H}}
$$

- \bullet $Q(y, f)$ is a data-fit term (squared error loss, negative log likelihood, etc.)
- $\lambda\Vert f\Vert^{2}_{\mathcal{H}}$ is the regularizer term
- $D[T] = Q(y, t) + \lambda ||t|| \mathcal{H}$
term (squared error loss, negative
rizer term
pothness assumptions on f as enco
enalty factor
r Theorem)
minimizer $f \in \mathcal{H}$ of $J[f]$ has the fo • Represents smoothness assumptions on f as encoded by a suitable RKHS
	- $\lambda \in \mathbb{R}^+$ is a penalty factor

Let H be a RKHS. Each minimizer $f \in H$ of J[f] has the form

$$
f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)
$$

for some $\alpha_1, \ldots, \alpha_n$.

Representer Theorem (pt 1)

Define

$$
J[f] = Q(y, f) + \lambda ||f||^2_{\mathcal{H}}
$$

- \bullet $Q(y, f)$ is a data-fit term (squared error loss, negative log likelihood, etc.)
- $\lambda\Vert f\Vert^{2}_{\mathcal{H}}$ is the regularizer term
- $D[T] = Q(y, t) + \lambda ||t|| \mathcal{H}$
term (squared error loss, negative
rizer term
pothness assumptions on f as enco
enalty factor
r Theorem)
minimizer $f \in \mathcal{H}$ of J[f] has the fo • Represents smoothness assumptions on f as encoded by a suitable RKHS
	- $\lambda \in \mathbb{R}^+$ is a penalty factor

Theorem (Representer Theorem)

Let H be a RKHS. Each minimizer $f \in \mathcal{H}$ of J[f] has the form

$$
f(x) = \sum_{i=1}^n \alpha_i k(x, x_i)
$$

for some $\alpha_1, \ldots, \alpha_n$.

Representer Theorem (Specific Cases)

$$
J[f] = Q(y, f) + \lambda ||f||^2_{\mathcal{H}}
$$

Least Squares Ridge Regression $\left(f(\mathsf{x}_i)=\beta^{\top}\mathsf{x}_i\right)$

$$
J[f] = \sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda ||\beta||_2^2
$$
 (squared error loss)

Support Vector Machines

Squares Ridge Regression
$$
(f(x_i) = \beta^\top x_i)
$$

\n
$$
J[f] = \sum_{i=1}^n (y_i - \beta^\top x_i)^2 + \lambda ||\beta||_2^2
$$
 (squared error loss)
\nort Vector Machines
\n
$$
J[f] = \sum_{i=1}^n \max(0, 1 - y_i(w^\top x_i - b)) + \lambda ||w||_2^2
$$
 (hinge loss)

Gaussian Process Regression

$$
J[f] = \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(x_i))^2 + \frac{1}{2} ||f||_H^2
$$
 (Gaussian likelihood)

Representer Theorem (Specific Cases)

$$
J[f] = Q(y, f) + \lambda ||f||^2_{\mathcal{H}}
$$

Least Squares Ridge Regression $\left(f(\mathsf{x}_i)=\beta^{\top}\mathsf{x}_i\right)$

$$
J[f] = \sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda ||\beta||_2^2
$$
 (squared error loss)

• Support Vector Machines

Squares Ridge Regression
$$
(f(x_i) = \beta^\top x_i)
$$

\n
$$
J[f] = \sum_{i=1}^n (y_i - \beta^\top x_i)^2 + \lambda ||\beta||_2^2
$$
 (squared error loss)
\n
$$
J[f] = \sum_{i=1}^n \max(0, 1 - y_i(w^\top x_i - b)) + \lambda ||w||_2^2
$$
 (hinge loss)

Gaussian Process Regression

$$
J[f] = \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(x_i))^2 + \frac{1}{2} ||f||^2_{\mathcal{H}}
$$
 (Gaussian likelihood)

Representer Theorem (Specific Cases)

$$
J[f] = Q(y, f) + \lambda ||f||^2_{\mathcal{H}}
$$

Least Squares Ridge Regression $\left(f(\mathsf{x}_i)=\beta^{\top}\mathsf{x}_i\right)$

$$
J[f] = \sum_{i=1}^{n} (y_i - \beta^{\top} x_i)^2 + \lambda ||\beta||_2^2
$$
 (squared error loss)

• Support Vector Machines

Squares Ridge Regression
$$
(f(x_i) = \beta^\top x_i)
$$

\n
$$
J[f] = \sum_{i=1}^n (y_i - \beta^\top x_i)^2 + \lambda ||\beta||_2^2
$$
 (squared error loss)
\n
$$
J[f] = \sum_{i=1}^n \max(0, 1 - y_i(w^\top x_i - b)) + \lambda ||w||_2^2
$$
 (hinge loss)

Gaussian Process Regression

$$
J[f] = \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(x_i))^2 + \frac{1}{2} ||f||_H^2
$$
 (Gaussian likelihood)

Using the Representer Theorem (RKHS Norm)

- Representer Theorem: The minimizer has form $f(\mathsf{x}) = \sum_{i=1}^n \alpha_i k(\mathsf{x}, \mathsf{x}_i)$
- Reproducing Property: $\langle k(\cdot, \mathsf{x}_i), k(\cdot, \mathsf{x}_j)\rangle_{\mathcal{H}} = k(\mathsf{x}_i, \mathsf{x}_j)$

producing Property:
$$
\langle \kappa(\cdot, x_j), \kappa(\cdot, x_j) \rangle \mathcal{H} = \kappa(x_i, x_j)
$$

\n
$$
||f||_{\mathcal{H}} = ||f(\cdot)||_{\mathcal{H}} = \left\| \sum_{i=1}^{n} \alpha_i k(\cdot, x_i) \right\|_{\mathcal{H}}
$$
 (representer theorem)
\n
$$
= \left\langle \sum_{i=1}^{n} \alpha_i k(\cdot, x_i), \sum_{j=1}^{n} \alpha_j k(\cdot, x_j) \right\rangle_{\mathcal{H}}
$$
 (write as inner product)
\n
$$
= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle k(\cdot, x_j), k(\cdot, x_j) \rangle_{\mathcal{H}}
$$
 (inner product bilinearity)
\n
$$
= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j)
$$
 (reproducing property)
\n
$$
= \alpha^{\top} K \alpha
$$

Using the Representer Theorem (GP Case)

In Gaussian Process Regression:

$$
J[f] = \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(x_i))^2 + \frac{1}{2} ||f||_{\mathcal{H}}^2
$$

\n
$$
= \frac{1}{2\sigma^2} (y - K\alpha)^{\top} (y - K\alpha) + \frac{1}{2} \alpha^{\top} K\alpha
$$

\n
$$
= \frac{1}{2} \alpha^{\top} \left(K + \frac{1}{2\sigma^2} K^{\top} K \right) \alpha - \frac{1}{2\sigma^2} y^{\top} K\alpha + \frac{1}{2\sigma^2} y^{\top} y
$$

\n
$$
\text{with respect to } \alpha = [\alpha_1, \dots, \alpha_n]^{\top};
$$

\n
$$
\Rightarrow \hat{\alpha} = (K + \sigma^2 I)^{-1} y
$$

Minimize J with respect to $\alpha=[\alpha_1,\ldots,\alpha_n]^\top$:

$$
\Rightarrow \hat{\alpha} = (K + \sigma^2 I)^{-1} y
$$

$$
\Rightarrow \hat{f}(x_*) = \sum_{i=1}^n \hat{\alpha}_i k(x_*, x_i) = k(x_*)^\top (K + \sigma^2 I)^{-1} y
$$

where $k(x_*) = [k(x_*,x_1), \ldots, k(x_*,x_n)]^{\top}$.

 Ω

K ロ ⊁ K 倒 ≯ K

Using the Representer Theorem (GP Case)

In Gaussian Process Regression:

$$
J[f] = \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(x_i))^2 + \frac{1}{2} ||f||_{\mathcal{H}}^2
$$

\n
$$
= \frac{1}{2\sigma^2} (y - K\alpha)^{\top} (y - K\alpha) + \frac{1}{2} \alpha^{\top} K\alpha
$$

\n
$$
= \frac{1}{2} \alpha^{\top} \left(K + \frac{1}{2\sigma^2} K^{\top} K \right) \alpha - \frac{1}{2\sigma^2} y^{\top} K\alpha + \frac{1}{2\sigma^2} y^{\top} y
$$

\n
$$
J \text{ with respect to } \alpha = [\alpha_1, \dots, \alpha_n]^{\top}:
$$

\n
$$
\Rightarrow \hat{\alpha} = (K + \sigma^2 I)^{-1} y
$$

Minimize J with respect to $\alpha=[\alpha_1,\ldots,\alpha_n]^\top$:

where $k(x_*) = [k(x_*,x_1), \ldots, k(x_*,x_n)]^{\top}$.

$$
\Rightarrow \hat{\alpha} = (K + \sigma^2 I)^{-1} y
$$

$$
\Rightarrow \hat{f}(x_*) = \sum_{i=1}^n \hat{\alpha}_i k(x_*, x_i) = k(x_*)^\top (K + \sigma^2 I)^{-1} y
$$

Dr. Jimmy Risk Cal Poly Pomona [The Role of a Kernel in Statistical Learning](#page-0-0) $4/6/21$ 14/1

 Ω

イロト イ御 トメ ヨ トメ ヨ

Using the Representer Theorem (GP Case)

In Gaussian Process Regression:

$$
J[f] = \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(x_i))^2 + \frac{1}{2} ||f||_{\mathcal{H}}^2
$$

\n
$$
= \frac{1}{2\sigma^2} (y - K\alpha)^{\top} (y - K\alpha) + \frac{1}{2} \alpha^{\top} K\alpha
$$

\n
$$
= \frac{1}{2} \alpha^{\top} \left(K + \frac{1}{2\sigma^2} K^{\top} K \right) \alpha - \frac{1}{2\sigma^2} y^{\top} K\alpha + \frac{1}{2\sigma^2} y^{\top} y
$$

\n
$$
J \text{ with respect to } \alpha = [\alpha_1, \dots, \alpha_n]^{\top}:
$$

\n
$$
\Rightarrow \hat{\alpha} = (K + \sigma^2 I)^{-1} y
$$

Minimize J with respect to $\alpha=[\alpha_1,\ldots,\alpha_n]^\top$:

$$
\Rightarrow \hat{\alpha} = (K + \sigma^2 I)^{-1} y
$$

$$
\Rightarrow \hat{f}(x_*) = \sum_{i=1}^n \hat{\alpha}_i k(x_*, x_i) = k(x_*)^\top (K + \sigma^2 I)^{-1} y
$$

where $k(x_*) = [k(x_*,x_1), \ldots, k(x_*,x_n)]^\top$.

 Ω

イロト イ御 トメ ヨ トメ ヨ

Goal: recover f from data $(x_1, y_1), \ldots, (x_n, y_n)$

ata $(x_1, y_1), \ldots, (x_n, y_n)$
ymmetric, positive definite func t ions on f
em ensures a minimizer to the p
em $J[f] = Q(y, f) + \lambda \|f\|_{\mathcal{H}}^2$ **1** Choose a kernel (symmetric, positive definite function) \bullet Imposes restrictions on f

² Representer theorem ensures a minimizer to the penalized minimization problem

$$
J[f] = Q(y, f) + \lambda ||f||^2_{\mathcal{H}}
$$

Gaussian Process Regression: $k(x, x') = cov(f(x), f(x'))$

• Support Vector Machines: maps input space into feature space:

$$
k(\mathsf{x},\mathsf{x}') = \langle \phi(\mathsf{x}), \phi(\mathsf{x}') \rangle_V
$$

S Regression: $k(x, x') = cov(f(x))$
 Machines: maps input space in
 $k(x, x') = \langle \phi(x), \phi(x') \rangle_V$

is a map that transforms the in

task at hand

dith Mercer's theorem by choosing where $\phi: \mathcal{X} \to V$ is a map that transforms the input data to be more appropriate to the task at hand

Can be done with Mercer's theorem by choosing an appropriate kernel

- In this work we focus on Gaussian process regression
- cus on Gaussian process regress
ar interpretation in other metho
ternel ridge regression, kernel P(• Kernels have similar interpretation in other methods (e.g. support vector machines, kernel ridge regression, kernel PCA)

Definition (Gaussian Process)

Let $f: \mathcal{X} \to \mathbb{R}$. Then f is a **Gaussian process** if for all $n \in \mathbb{N}$, the vector $[f(x_1), \ldots, f(x_n)]^\top$ is multivariate normal.

- Specified by
	- mean function $\mu: \mathbb{E}[f(x)] = \mu(x)$
	- covariance kernel k : cov $(f(x), f(x')) = k(x, x')$
- DRAFT Generalization of a multivariate normal distribution to infinite dimensional indices

The covariance kernel k is crucial – it determines underlying properties of f considering it as a function of x, e.g.

- **•** continuity,
- **o** differentiability,
- **•** overall shape (linear? polynomial? periodic?)

Definition (Gaussian Process)

Let $f: \mathcal{X} \to \mathbb{R}$. Then f is a **Gaussian process** if for all $n \in \mathbb{N}$, the vector $[f(x_1), \ldots, f(x_n)]^\top$ is multivariate normal.

- Specified by
	- mean function $\mu: \mathbb{E}[f(x)] = \mu(x)$
	- covariance kernel k : cov $(f(x), f(x')) = k(x, x')$
- $\mu: \mathbb{E}[f(x)] = \mu(x)$
 $\mu: \mathbb{E}[f(x)] = \mu(x)$

and k: cov $(f(x), f(x')) = k(x, x')$

and multivariate normal distribution

s

k is crucial it determines undenction of x, e.g. Generalization of a multivariate normal distribution to infinite dimensional indices

The covariance kernel k is crucial – it determines underlying properties of f considering it as a function of x , e.g.

- **•** continuity,
- **o** differentiability,
- overall shape (linear? polynomial? periodic?)

Gaussian Process Regression

Given data
$$
(x_1, y_1), \ldots, (x_n, y_n)
$$
, assume
\n• $y_i = f(x_i) + \epsilon_i$, $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$
\n• *f* is a Gaussian process with mean function μ and covariance *kernel k*
\n• Without loss of generality, assume $\mu = 0$
\nThen if x_* is a test point, $[y_1, \ldots, y_n, f(x_*)]^T$ is multivariate normal and thus
\n $f(x_*)|y_1, \ldots, y_n \sim N(m(x_*), s(x_*, x_*))$
\nwhere

Then if x_* is a test point, $[y_1, \ldots, y_n, f(x_*)]$ is multivariate normal and thus

$$
f(x_*)|y_1,\ldots,y_n\sim \mathcal{N}(m(x_*),s(x_*,x_*))
$$

where

$$
m(x_*) = k(x_*)^\top [K + \sigma^2 I]^{-1} y,
$$

$$
s(x_*, x_*) = k(x_*, x_*) - k(x_*)^\top [K + \sigma^2 I]^{-1} k(x_*)
$$

Consistency With Representer Theorem

Using $Q(y, f) = \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - f(x_i))^2$ (Gaussian likelihood) • posterior mean function m is the minimizer of $J[f]$, i.e.

error mean function *m* is the minimizer of
$$
J[f]
$$
, i.e.

\n $m = \operatorname{argmin}_{f \in \mathcal{H}} J[f] = \operatorname{argmin}_{f \in \mathcal{H}} \left\{ Q(y, f) + \frac{1}{2} \|f\|_{\mathcal{H}}^2 \right\}$

\nditions on the covariance Kernel *k* determines behavior of the operator. Gaussian process *f* itself (i.e., with mean function posterior Gaussian process *f* itself (i.e., with mean function *f* is the mean function $f(x, y)$ is the mean function $f(x, y)$.

Hence:

- \bullet Conditions on the covariance kernel k determines behavior of the posterior mean function
- \bullet The posterior Gaussian process f itself (i.e. with mean function m and covariance kernel $s(\cdot, \cdot)$) has slightly different, but related properties

In other settings, e.g. support vector machines, replace m with the (kevin's thesis?)

Consistency With Representer Theorem

- Using $Q(y, f) = \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i f(x_i))^2$ (Gaussian likelihood)
- posterior mean function m is the minimizer of $J[f]$, i.e.

error mean function
$$
m
$$
 is the minimizer of $J[f]$, i.e.

\n
$$
m = \operatorname{argmin}_{f \in \mathcal{H}} J[f] = \operatorname{argmin}_{f \in \mathcal{H}} \left\{ Q(y, f) + \frac{1}{2} \|f\|_{\mathcal{H}}^2 \right\}
$$
\nlitions on the covariance Kernel k determines behavior of the operator. Gaussian process f itself (i.e., with mean function

\nposterior Gaussian process f itself (i.e., with mean function

\nlinearly independent, but related to the product of the product $f(x, y)$.

Hence:

- \bullet Conditions on the covariance kernel k determines behavior of the posterior mean function
- \bullet The posterior Gaussian process f itself (i.e. with mean function m and covariance kernel $s(\cdot, \cdot)$) has slightly different, but related properties

In other settings, e.g. support vector machines, replace m with the (kevin's thesis?)

- The kernel determines several properties of the statistical problem at hand
- ines several properties of the sta
Article examples of commonlineal world examples • The following slides provide examples of commonly used kernels, along with some real world examples

Common Kernels (Squared Exponential Kernel)

- Let $x, x' \in \mathbb{R}$ for simplicity
	- Squared Exponential Kernel³

$$
k_{\mathsf{SE}}(x, x') = \eta^2 \exp\left(-\frac{(x - x')^2}{2\ell^2}\right)
$$

- \bullet ℓ is a lengthscale that determines the length of information borrowing in the function.
- η^2 determines the average distance the function is away from its mean.
- Gaussian processes with this kernel are infinitely differentiable.

 3 also called the radial basis function kernel, or Gaussi[an](#page-29-0) k[ernel](#page-0-0)

Common Kernels (Linear Kernel)

Linear Kernel

$$
k_{\text{Lin}}(x,x') = \sigma_b^2 + \sigma_v^2(x-c)(x'-c)
$$

- The offset c determines the x-coordinate of the point that all lines in the posterior go through
- The constant variance σ_b^2 determines how far from 0 the height of the function will be at $x = 0$.
- Gaussian processes with this kernel corresponds exactly with Bayesian linear regression

Common Kernels (Matérn Kernel)

o Matérn

$$
k_{\text{Mat}}(x, x'; \nu) = \frac{\eta^2}{\Gamma(\nu)2^{\nu-1}} \left(\frac{\sqrt{2\nu}}{\ell} |x - x'| \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{\ell} |x - x'| \right)
$$

Where $\Gamma(\cdot)$ is the gamma function and $K_{\nu}(\cdot)$ is a modified Bessel function

- \bullet ℓ is a lengthscale
- \bullet *v* controls the smoothness of f
	- The resulting Gaussian process is ν −times differentiable
	- e.g. $\nu = 2.5 \Rightarrow f$ is 2 times differentiable, $\nu = 0.5 \Rightarrow f$ is not differentiable

Common Kernels (Periodic)

Periodic Kernel

$$
k_{\text{Per}}(x, x') = \eta^2 \exp\left(-\frac{2\sin^2(\pi|x-x'|/p)}{\ell^2}\right)
$$

Where $\Gamma(\cdot)$ is the gamma function and $K_{\nu}(\cdot)$ is a modified Bessel function

- $\bullet \ell$ is a lengthscale
- \bullet p determines the period (distance between repeating patterns of the function)

Changepoint Kernels

- Expresses change from one kernel to another
- Heteroskedastic Kernel
	- Automatically accounts for varying noise amplitude
- **A** Translation and Rotation Invariant Kernels
	- Useful with image data

ge from one kernel to another
Kernel
accounts for varying noise amplitud
Rotation Invariant Kernels
age data
odel Construction with Gaussian See Automatic Model Construction with Gaussian Processes by Duvenaud for more examples and thorough discussion: [https://www.cs.toronto.edu/ duvenaud/thesis.pdf](https://www.cs.toronto.edu/~duvenaud/thesis.pdf)

Two common ways to construct new kernels:

• Adding two kernels yields a kernel⁴

construct new kernels:
\ns yields a kernel⁴
\n
$$
k_{a+b}(x, x') = k_a(x, x') + k_b(x, x')
$$
\n
\nernels yields a kernel
\n
$$
k_{a \cdot b}(x, x') = k_a(x, x') \cdot k_b(x, x')
$$

• Multiplying two kernels yields a kernel

$$
k_{a \cdot b}(x, x') = k_a(x, x') \cdot k_b(x, x')
$$

 4 recall by kernel, we mean a symmetric and positive d[efin](#page-34-0)i[te function](#page-0-0) $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ Dr. Jimmy Risk Cal Poly Pomona [The Role of a Kernel in Statistical Learning](#page-0-0) $4/6/21$ $27/1$ In a Gaussian process, if

if
 $f_1 \sim GP(\mu_1, k_1)$
 $f_2 \sim GP(\mu_2, k_2)$
 $+ f_2 \sim GP(\mu_1 + \mu_2, k_1 + k_2).$ $f_1 \sim \text{GP}(\mu_1, k_1)$ $f_2 \sim GP(\mu_2, k_2)$

Then

$f_1 + f_2 \sim GP(\mu_1 + \mu_2, k_1 + k_2).$

€⊡

 QQ

Kernel Multiplication and Dimensionality

If $\bm{\mathsf{x}}=[\bm{\mathsf{x}}^{(1)},\cdots,\bm{\mathsf{x}}^{(d)}]^\top\in\mathbb{R}^d$, it may make sense to define

$$
k(x, x') = \prod_{j=1}^{d} k_j(x^{(j)}, x'^{(j)})
$$

 $k(x, x') = \prod_{j=1} k_j(x^{(j)}, x'^{(j)})$
 $(k, x^{(2)})^\top \in \mathbb{R}^2$ where

individuals age, and
 k : current calendar year.
 $k(x') = k_1(x^{(1)}, x'^{(1)}) \cdot k_2(x^{(2)}, x'^{(2)})$ Example. Suppose $[x^{(1)}, x^{(2)}]^\top \in \mathbb{R}^2$ where $\mathrm{x}^{(1)}$ represents an individuals age, and $x^{(2)}$ represents the current calendar year.

$$
k(x, x') = k_1(x^{(1)}, x'^{(1)}) \cdot k_2(x^{(2)}, x'^{(2)})
$$

For example

$$
k(\mathsf{x},\mathsf{x}') = \eta^2 \exp\left(\frac{-|\mathsf{x}^{(1)}-\mathsf{x}'^{(1)}|^2}{2\ell_{\mathtt{age}}}\right) \cdot \exp\left(\frac{-|\mathsf{x}^{(2)}-\mathsf{x}'^{(2)}|^2}{2\ell_{\mathtt{year}}}\right) \underset{\mathsf{R} \text{ is a } |\mathsf{x}|\leq |\mathsf{x}|\leq |\mathsf{R}|}{\mathsf{edge}} \leq \eta^2 \cdot \eta^2
$$

Exercise

Propose function plays the central

assumptions about the under

milarity between functions.

Stationary Gaussian Proces

ential covariance function:
 $\exp\left(-\frac{1}{2}\frac{(\mathbf{x}_i - \mathbf{x}_j)'(\mathbf{x}_i - \mathbf{x}_j)}{\sigma^2}\right)$

$$
k(\mathbf{x}_i, \mathbf{x}_j) = \sigma_f^2 \exp\left(-\frac{1}{2} \frac{(\mathbf{x}_i - \mathbf{x}_j)'(\mathbf{x}_i - \mathbf{x}_j)}{\ell^2}\right), \quad (10)
$$

SVM Classification

SVM is generally a classification method. Task:

- Decide a rule that labels a point to be purple or yellow.
- The mechanics of the rule with SVM are dependent on the kernel chosen.

Linear Decision Boundary

Choosing the linear kernel yields a linear decision boundary:

$$
k(x, x') = x^{\top} x'
$$

A linear decision boundary is not appropriate here...

"Circular" Decision Boundary

The radial basis function kernel gives a decision boundary based on "closeness" of points

$$
k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\theta^2}\right)
$$

Example: Mauna Loa Data Set

- y: monthly average atmospheric $CO₂$ concentrations (in ppm by volume) derived from air samples at the Mauna Loa Observatory, Hawaii, between 1958 and 2003, with some missing values
- x: month

Goal: model $f(x)$

 \leftarrow \Box

Example: Mauna Loa Data Set (Kernel Choice)

Model the apparent features⁵:

O Long term rising trend

$$
k_1(x,x') = \theta_1^2 \exp\left(-\frac{(x-x')^2}{2\theta_2^2}\right)
$$

where θ_1 is the amplitude, and θ_2 is the characteristic length-scale

• Yearly decaying periodicity

DRAFT k2(x, x ³ exp (x − x exp 2 sin² (π(x − x

where θ_3 is the magnitude, θ_4 is the decay-time, and θ_5 is the smoothness of the periodic component.

⁵This particular construction is taken from Gaussian Processes for Machine Learning by Rasmussen and Williams QQ (□) (/ □)

Dr. Jimmy Risk Cal Poly Pomona [The Role of a Kernel in Statistical Learning](#page-0-0) $4/6/21$ 36 / 1

Example: Mauna Loa Data Set (Kernel Choice)

Model the apparent features⁵:

O Long term rising trend

$$
k_1(x, x') = \theta_1^2 \exp\left(-\frac{(x - x')^2}{2\theta_2^2}\right)
$$

where θ_1 is the amplitude, and θ_2 is the characteristic length-scale

• Yearly decaying periodicity

$$
k_1(x, x') = \theta_1^2 \exp\left(-\frac{(x - x')^2}{2\theta_2^2}\right)
$$

the amplitude, and θ₂ is the characteristic length-scale
ying periodicity

$$
k_2(x, x') = \theta_3^2 \exp\left(-\frac{(x - x')^2}{2\theta_4^2}\right) \exp\left(-\frac{2\sin^2(\pi(x - x'))}{2\theta_5^2}\right)
$$

the magnitude, θ₄ is the decay-time, and θ₅ is the smoothm

where θ_3 is the magnitude, θ_4 is the decay-time, and θ_5 is the smoothness of the periodic component.

⁵This particular construction is taken from Gaussian Processes for Machine Learning by Rasmussen and Williams QQ

Example: Mauna Loa Data Set (Kernel Choice, Continued)

(Small) medium term irregularities

$$
k_3(x,x')=\theta_6^2\left(1+\frac{(x-x')^2}{2\theta_8\theta_7^2}\right)^{-\theta_8}
$$

where θ_6 is the magnitude, θ_7 is the typical length-scale, and θ_8 is the shape parameter

 \bullet Noise term

$$
k_3(x, x') = \theta_6^2 \left(1 + \frac{(x - x')^2}{2\theta_8 \theta_7^2} \right)
$$

gplitude, θ_7 is the typical length-scale, and θ_8

$$
k_4(x, x') = \theta_9^2 \exp\left(-\frac{(x - x')^2}{2\theta_{10}^2}\right) + \theta_{11}^2 \delta_{x=x'}
$$
,
gplitude of the correlated noise component, θ_1
is the magnitude of the independent noise

where θ_9 is the magnitude of the correlated noise component, θ_{10} is its length-scale, and θ_{11} is the magnitude of the independent noise component.

Final covariance function:

$$
k(x, x') = k_1(x, x') + k_2(x, x') + k_3(x, x') + k_4(x, x')
$$

 \leftarrow \Box

Example: Mauna Loa Data Set (Kernel Choice, Continued)

(Small) medium term irregularities

$$
k_3(x,x')=\theta_6^2\left(1+\frac{(x-x')^2}{2\theta_8\theta_7^2}\right)^{-\theta_8}
$$

where θ_6 is the magnitude, θ_7 is the typical length-scale, and θ_8 is the shape parameter

• Noise term

$$
k_3(x, x') = \theta_6^2 \left(1 + \frac{(x - x')^2}{2\theta_8 \theta_7^2} \right)
$$

gplitude, θ_7 is the typical length-scale, and θ_8

$$
k_4(x, x') = \theta_9^2 \exp\left(-\frac{(x - x')^2}{2\theta_{10}^2}\right) + \theta_{11}^2 \delta_{x=x'},
$$

gplitude of the correlated noise component, θ
 θ_{11} is the magnitude of the independent noise

where θ_9 is the magnitude of the correlated noise component, θ_{10} is its length-scale, and θ_{11} is the magnitude of the independent noise component.

Final covariance function:

$$
k(x,x') = k_1(x,x') + k_2(x,x') + k_3(x,x') + k_4(x,x')
$$

Example: Mauna Loa Data Set (Posterior Prediction)


```
Learned kernel:
2.63**2 * RBF(length_scale=51.6) +
0.155**2 * RBF(length_scale=91.5) * ExpSineSquared(length_scale=1.48,
                                                   periodicity=1) +
0.0314**2 * RationalQuadratic(alpha=2.89, length_scale=0.968) +
0.011**2 * RBF(length_scale=0.122) + WhiteKernel(noise_level=0.000126)
```
Duvenaud's Thesis (Part 1)

Automatic Model Construction with Gaussian Processes by Duvenaud gives an algorithm that searches over kernel combinations and expresses the structure discovered

Example⁶

Figure 4.1: Solar irradiance data (Lean et al., 1995).

 6 Figures are taken from Duvenaud

Duvenaud's Thesis (Part 2)

Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of components with data (right)

Ongoing and Completed Projects (Part 1)

Gaussian Process Models for Computer Vision (Student Thesis (Hakeem Frank))

- Comparing classification metrics in changing kernels (using a GP classifier), in three settings: handwritten digit classification, object detection (airplane or not), brain scans (tumor detection)
- **•** Found that results varied heavily among using polynomial, linear, and squared exponential kernels

Sample table (handwritten digit classification)

 \leftarrow \Box

ussian Process Superresolution (

image "superresolution" techniques

ost exclusively uses squared exponent

ow that images with sharp details (e.g. M

details in more relaxed kernels (e.g. M Kernel Selection in Gaussian Process Superresolution (Student Thesis (Charles Amelin))

- Comparing kernels in image "superresolution" techniques
- Current literature almost exclusively uses squared exponential kernel
- Preliminary results show that images with sharp details (e.g. corners of stairs) are upscaled with better details in more relaxed kernels (e.g. Matérn kernel)

Ongoing and Completed Projects (Part 3)

Kernel Selection in Multipopulation Mortality Modelling

- \bullet Idea: use a special kernel that allows for vector-valued functions
- Model multi-population mortality through latent GP's

Example.

population mortality through latent GP's
\n
$$
f_{USA,M}(x) = a_{1,1}u_1(x) + a_{1,2}u_2(x) + a_{1,3}u_3(x)
$$

\n $f_{USA,F}(x) = a_{2,1}u_1(x) + a_{2,2}u_2(x) + a_{2,3}u_3(x)$
\n $f_{JPN,M}(x) = a_{3,1}u_1(x) + a_{3,2}u_2(x) + a_{3,3}u_3(x)$
\n $f_{JPN,F}(x) = a_{4,1}u_1(x) + a_{4,2}u_2(x) + a_{4,3}u_3(x)$
\nGPs $[u_1(x), u_2(x), u_3(x)]^\top$ as a vector-valued
\nits are hyperparameters

- Model latent GPs $[u_1(x), u_2(x), u_3(x)]^\top$ as a vector-valued GP
- \bullet $a_{i,j}$ coefficients are hyperparameters
- Latent GPs can express unique fundamental mortality structures through different kernels
- There exists a tensor covariance structure which significantly reduces fitting time Ω
- Kernel methods are gaining in popularity
- Kernel choice is a nontrivial topic
	- If there is domain knowledge, the modeler can use this in choosing a kernel
- e gaining in popularity
nontrivial topic
ain knowledge, the modeler can us
omain knowledge, the modeler can
del selection • If there is no domain knowledge, the modeler can try different kernels similarly to model selection

References

- Williams, Christopher KI, and Carl Edward Rasmussen. "Gaussian processes for regression." (1996).
- Duvenaud, David. "Automatic model construction with Gaussian processes." Diss. University of Cambridge, (2014).
- Aronszajn, Nachman. "Theory of reproducing kernels." Transactions of the American mathematical society 68.3 (1950): 337-404.
- "Automatic model construction
University of Cambridge, (2014)
an. "Theory of reproducing ker
nathematical society 68.3 (1950)
Mike Ludkovski. "Multi-Outpu
i-Population Longevity Modelin Huynh, Nhan, and Mike Ludkovski. "Multi-Output Gaussian Processes for Multi-Population Longevity Modeling." arXiv preprint arXiv:2003.02443 (2020).
- Frank, Hakeem. "Gaussian Process Models for Computer Vision." Diss. California State Polytechnic Universit[y,](#page-54-0) [Pomona](#page-0-0)[, \(2020\).](#page-0-0)