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What is a Function

A function takes in an input and gives an output.

f (input) = output.

Example:

f (age) = age + 1 (birthday)

f (x) = sin(x) (mathematical sin function)

f (messy hair) = clean head (haircut)
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Function Example

Example

A tree grows 20cm every year, so the height of the tree is related to its age
using this function

f (age) = 20 · age

Is the above function realistic?
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Statistical Modelling

Statistical modelling1 adds a error term.

This could represent...
measurement error;
model inaccuracy;
etc.

f (age) = 20 · age + error

This is a catch-all term.

A good model can reduce error using the data we have.

Not all errors can be reduced.
Example: flip a coin a number of times, and consider a function that
records the number of heads

f (number of flips) =??

A good statistical model will reduce predictable error and leave the
irreducible error.

1or, machine learning model
Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 4 / 1
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Example of Complex Data

This dataset contains a subset of the fuel economy data that the EPA
makes available on https://fueleconomy.gov/

n = 234 cars

d = 11 variables
mpg (miles per gallon)
cylinders (number of cylinders)
horsepower (engine horsepower)
weight (vehicle weight (lbs))
year (model year)
origin (origin of car (Amer, Euro, Japan)

mpg = f (cylinders, horsepower, weight, year, origin)
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Types of Statistical Models

Linear Regression
Most common
Assumes a linear relationship

mpg = α + β1 · cylinders + β2 · horsepower + β3 · weight
+ β4 · year + β5 · origin + error

Coefficients (α, β1, . . . , β5) are fitted from the data

Produces a line2 of best fit

Assumptions of randomness are placed on error

Regression Spline
Assumes some degree of smoothness on the relationship between mpg

and its inputs
Most commonly, a collection of piecewise third degree polynomials

Adds an error term to account for randomness

2a plane, in multiple dimensions
Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 6 / 1
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Spline Example

(Taken from https://github.com/ttk592/spline)
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More Complicated Machinery (Neural Network)

Neural Network
Designed to mimic how the brain handles information
Compromised of many parameters, including

the number of hidden layers (1, in the example below)
the number of neurons per layer (6, in the example below)

Very powerful model
output = f (input) is compared to a “black-box:”

1 Plug in input
2 Magic happens (black-box)
3 Get output

Difficult to understand and analyze
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More Complicated Machinery (Gaussian Process)

Gaussian Process
Gaussian Processes originated as a probabilistic concept in the early
1920’s.
Although mathematically difficult, they have rich theoretical properties
and are interpretable methods.

Assumes the function f itself is random

f︸︷︷︸
random

(input) = output (Gaussian process)

Compare to linear regression:

f (input) = α + β · input︸ ︷︷ ︸
deterministic

+ error︸ ︷︷ ︸
random

(Linear Regression)
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Motivation: Car MPG Data

Car MPG data from 1970–1982
Produce a new car with weight 5500.

Best guess for MPG?
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Linear Regression

mpg = f (lbs)

mpg = α + β · lbs + error

Line of best fit3

mpg = 46.22− 0.0076 · lbs + error

3minimizes squared distance to data points
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Prediction (MPG)

Prediction at lbs = 5500:

m̂pg = 46.22− 0.0076 · lbs
= 46.22− 0.0076 · 5500

= 4.42
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Oops...

Prediction:

m̂pg = 46.22− 0.0076 · lbs
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What Went Wrong (Part 1)

extrapolate4: extend the application of (a method or conclusion,
especially one based on statistics) to an unknown situation by
assuming that existing trends will continue or similar methods will be
applicable.
“the results cannot be extrapolated to other patient groups”

In general, extrapolating can lead to trouble.

4from dictionary.com
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What Went Wrong (Part 1)

Linear regression assumes the mathematical relationship for f

mpg = f (lbs, error)

mpg = α + β · lbs + error

incorrect assumption ⇒ incorrect predictions
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All Models are Wrong

“All models are wrong, but some are useful” - George Box
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Functional Approach (Take 2)

Assume a different mathematical relationship for f

mpg = f (lbs, error)

mpg = α + β1 · lbs + β2 · lbs2 + error

“Curve” of best fit:5

mpg = 62.26− 0.0185 · lbs + 0.0000017 · lbs2 + error

5minimizes squared distance to data points
Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 17 / 1



DR
AF
T

Better...
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Oops
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Think Smarter, Not Harder

Data Slightly Perturbed Data
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Adding More Data

In a world of big data, we often have more than one variable
(e.g. cylinder, horsepower, etc.)

More Power
More Complex Models
More Possibility of Bad Assumptions

More difficult to visualize

Compare with 2-d scatterplot
How to visualize in 5-d?

Unnecessary variables can complicate things

Example: what if car color was included in the data set?
The blind modeller would include it, but it would hinder (not help) the
model
This is an extreme example, but it happens more than you would think
in our world of big data.

Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 21 / 1



DR
AF
T

Adding More Data

In a world of big data, we often have more than one variable
(e.g. cylinder, horsepower, etc.)

More Power
More Complex Models
More Possibility of Bad Assumptions

More difficult to visualize

Compare with 2-d scatterplot
How to visualize in 5-d?

Unnecessary variables can complicate things

Example: what if car color was included in the data set?
The blind modeller would include it, but it would hinder (not help) the
model
This is an extreme example, but it happens more than you would think
in our world of big data.

Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 21 / 1



DR
AF
T

Adding More Data

In a world of big data, we often have more than one variable
(e.g. cylinder, horsepower, etc.)

More Power
More Complex Models
More Possibility of Bad Assumptions

More difficult to visualize

Compare with 2-d scatterplot
How to visualize in 5-d?

Unnecessary variables can complicate things

Example: what if car color was included in the data set?
The blind modeller would include it, but it would hinder (not help) the
model
This is an extreme example, but it happens more than you would think
in our world of big data.

Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 21 / 1



DR
AF
T

Gaussian Processes

A Gaussian process (GP) is a type of model for a function f that uses
“nearby data” to produce a prediction.

Determining if a data point is “close” depends on a kernel function

Determines the properties of the underlying f

For example, choosing the kernel function lets you decide if the data
is...

linear?
continuous (no jumps)?
periodic (repeating patterns)?
smooth vs jagged?
combination of above?

A GP provides full probabilistic properties

How variable are future predictions?
What is the probability that my prediction will be above 150? Below
25? (etc.)
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Gaussian Process Details

Definition (Gaussian Process)

Let f : Rd → R. Then f is a Gaussian process if for all n = 1, 2, 3, . . .,
the vector [f (x1), . . . , f (xn)]> is multivariate normal.

Specified by

mean function µ: E[f (x)] = µ(x)
covariance kernel k : cov(f (x), f (x ′)) = k(x , x ′)

Generalization of a multivariate normal distribution to infinite
dimensional indices

Yes, this is very technical. See the next few slides for a simplification.
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Clarifying Randomness

Think of randomness as like flipping a coin.

Prior to the experiment, the outcome is unknown (modelled as
random)

When we flip the coin, we get H or T

This is called a realization (of the coin flipping experiment)

Experiment Realization

justflipacoin.com
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Randomness in Statistical Models

Phenomenon Model Realization

Coin Flipping P(H) = 0.5,P(T ) = 0.5 H or T

Linear Regression f (input) = α+ β · input︸ ︷︷ ︸
deterministic

+ error︸ ︷︷ ︸
random

output (for given input)

Gaussian Process Determined by Kernel The entire function f
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Which one is correct?

Linear Regression vs Gaussian Process

Neither is “correct”!

There isn’t a right answer.

Remember the quote: “All models are wrong, but some are useful”

Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 26 / 1
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Understanding Models with Randomness

f (input) = α + β · input︸ ︷︷ ︸
deterministic

+ error︸ ︷︷ ︸
random

(Linear Regression)

Data is assumed to be a realization of this process

Just like flipping a coin multiple times produces a sequence

H,T ,T ,H,H,H,T ,H,H,T ,H,T ,T , ...

Phenomenon Model Realization

Coin Flipping P(H) = 0.5,P(T ) = 0.5 H or T

Linear Regression f (input) = α+ β · input︸ ︷︷ ︸
deterministic

+ error︸ ︷︷ ︸
random

output (for given input)

Gaussian Process Determined by Kernel The entire function f
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Visualization

Suppose our hypothesized model follows

mpg = 46.22− 0.0076 · lbs + error
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Gaussian Process Visualization

A Gaussian process assumes the entire function is random

f︸︷︷︸
random

(input) = output (Gaussian process)

The function properties are determined by its covariance kernel

Automatic Model Construction with Gaussian Processes by Duvenaud
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Evidence As A Competitive Method (Gaussian Processes)

Source: https://www.soa.org/research/opportunities/

2021-individual-life-experience-contest/
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Mortality Modelling Example

GAUSSIAN PROCESS MODELS FOR MORTALITY RATES AND IMPROVEMENT FACTORS by Jimmy Risk, Mike
Ludkovski, and Howard Zail (ASTIN Bulletin 2018)

CDC Observed: Actual mortality improvement data

GP Smoothed: Gaussian process smoothed mortality improvement
(f (age, calendar year))

MP-2015: Society of Actuaries Gold Standard of Mortality Improvement (at the time)

Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 33 / 1



DR
AF
T

Example: Mauna Loa Data Set

y : monthly average atmospheric CO2 concentrations (in ppm by
volume) derived from air samples at the Mauna Loa Observatory,
Hawaii, between 1958 and 2003, with some missing values

x : month
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Example: Mauna Loa Data Set (Kernel Choice)

Model the apparent features6:

Long term rising trend

k1(x , x
′) = θ21 exp

(
− (x − x ′)2

2θ22

)
where θ1 is the amplitude, and θ2 is the characteristic length-scale

Yearly decaying periodicity

k2(x , x
′) = θ23 exp

(
− (x − x ′)2

2θ24

)
exp

(
−2 sin2(π(x − x ′))

2θ25

)
where θ3 is the magnitude, θ4 is the decay-time, and θ5 is the smoothness of the
periodic component.

6This particular construction is taken from Gaussian Processes for Machine Learning
by Rasmussen and Williams
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Example: Mauna Loa Data Set (Kernel Choice, Continued)

(Small) medium term irregularities

k3(x , x
′) = θ26

(
1 +

(x − x ′)2

2θ8θ27

)−θ8

where θ6 is the magnitude, θ7 is the typical length-scale, and θ8 is the shape
parameter

Noise term

k4(x , x
′) = θ29 exp

(
− (x − x ′)2

2θ210

)
+ θ211δx=x′ ,

where θ9 is the magnitude of the correlated noise component, θ10 is its
length-scale, and θ11 is the magnitude of the independent noise component.

Final covariance function:

k(x , x ′) = k1(x , x
′) + k2(x , x

′) + k3(x , x
′) + k4(x , x

′)
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Example: Mauna Loa Data Set (Posterior Prediction)

Learned kernel:

2.63**2 * RBF(length_scale=51.6) +

0.155**2 * RBF(length_scale=91.5) * ExpSineSquared(length_scale=1.48,

periodicity=1) +

0.0314**2 * RationalQuadratic(alpha=2.89, length_scale=0.968) +

0.011**2 * RBF(length_scale=0.122) + WhiteKernel(noise_level=0.000126)
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Gaussian Process Superresolution

Super-resolution is the task of reconstructing high-resolution (HR)
images from one or more observed low-resolution (LR) image

Different from smoothing out noise in images (does not restore high
resolution details)

Seminole work Single Image Super-Resolution Using Gaussian Process
Regression by He, et. al. uses only the squared-exponential kernel

A popular and flexible kernel
Has its limits

Our idea:

Explore using other kernels
Construct an algorithm to search over kernels based on image
Identify what kernels are useful for determining certain features in
images

Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 38 / 1
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Staircase (Test Image)

(a) Ground Truth (b) Low Resolution (c) Bicubic Interpolation

Figure: Effects of varying kernels on image reconstruction. Image was downscaled
from Ground truth 192× 192 to 96× 96 before applying Bicubic Interpolation.
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Kernel Effects on Gaussian Process Staircase SR

(a) Linear Kernel
(b) RBF (Smooth)
Kernel

(c) Non-Smooth
Kernel

(d) Periodic Kernel
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Kernel Effects on Gaussian Process Staircase SR

(a) Linear Kernel (b) RBF (Smooth) Kernel

(c) Non-Smooth Kernel (d) Periodic Kernel

(e) Bicubic Interpolation
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Automatic Kernel Searching

We applied a automatic kernel search algorithm from Automatic
Model Construction with Gaussian Processes (Duvenaud)

The kernel it came up with was

MAT 3
2

+ Linear + Periodic

MAT 3
2
: Measures similarity according to spatial closeness

Linear: Produces a linear trend effect
Periodic: Adds a periodic component
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Staircase (Final Comparison)

(a) Ground Truth (b) Low Resolution

(c) Bicubic
Interpolation

(d) GP (Best Kernel)

Dr. Jimmy Risk Cal Poly Pomona How Random was That? 10/4/21 43 / 1



DR
AF
T

Final Comparison (Highlights)

(a) GP (Best Kernel)

(b) Bicubic Interpolation
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Thank You!

Thank You!

Our work:

Ludkovski, Mike, Jimmy Risk, and Howard Zail. “Gaussian process
models for mortality rates and improvement factors.” ASTIN Bulletin:
The Journal of the IAA 48.3 (2018): 1307-1347.

Amelin, Charles P. GAUSSIAN PROCESS SUPER-RESOLUTION.
Diss. California State Polytechnic University, Pomona, 2021.
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