Genetic Algorithm Applications of Gaussian Process Kernels toward Mortality Surface Inference RCLR Modelling and Societal Impact of Longevity and Ageing

> Dr. Jimmy Risk Cal Poly Pomona

• Model Log Mortality Rate

$$\mathbf{x} = (x_{age}, x_{year}, x_{cohort})^1$$
 $y_{\mathbf{x}} = \log\left(\frac{D_{\mathbf{x}}}{L_{\mathbf{x}}}\right) = f(\mathbf{x}) + \epsilon_{\mathbf{x}}$

- y, D, L are observed
- $f(\cdot)$ drives the underlying mortality dynamics (unknown)
- ϵ_x is unaccountable (white) noise

 ${}^{1}x_{cohort} = x_{year} - x_{age}$ is year of birth

• Ludkovski-Risk-Zail (2018) $f = \mathcal{GP}(m, k)$ is a Gaussian Process $\mathbb{E}[f(\mathbf{x}_i)] = m(\mathbf{x}_i),$ (prior mean function)

 $\operatorname{cov}(f(\mathbf{x}_i), f(\mathbf{x}_j)) = k(\mathbf{x}_i, \mathbf{x}_j),$

(covariance kernel)

5/25/23

Definition

 $\{f(\mathbf{x})\}_{\mathbf{x}\in\mathbb{R}^d}$ is a Gaussian process if for all $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$, the vector $[f(\mathbf{x}_1), f(\mathbf{x}_2), \ldots, f(\mathbf{x}_n)]^\top$ has a multivariate normal distribution.

Gaussian Process Regression

• Gaussian process regression assumes $\epsilon(\mathbf{x}) \stackrel{iid}{\sim} N(0, \sigma^2)$

$$y(\mathbf{x}) = f(\mathbf{x}) + \epsilon(\mathbf{x}) \qquad \Rightarrow^2 \qquad \{y(\mathbf{x}_i)\}_{i=1}^{\infty} \sim \mathcal{GP}(m, k + \sigma^2 \delta_{i=j})$$

• Denote
$$\mathbf{y} = [y(\mathbf{x}_1), \cdots, y(\mathbf{x}_n)]^{ op}$$

• Properties of MVN³ imply that conditional on observed **y**,

$$f_* := f_* | y \sim \mathcal{GP}(m_*, k_*)$$
 (posterior GP)

where

$$m_*(\mathbf{x}) = \mathcal{K}(\mathbf{x}, \mathbf{X}) \left[\mathcal{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_n \right]^{-1} \mathbf{y}, \qquad (1)$$

$$k_*(\mathbf{x}, \mathbf{x}') = \mathcal{K}([\mathbf{x}, \mathbf{x}']^\top, \mathbf{X}) \left[\mathcal{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_n \right]^{-1} \mathcal{K}(\mathbf{X}, [\mathbf{x}, \mathbf{x}']^\top), \quad (2)$$

²since *f* is a GP ²since *f* is a GP ³Or, using Bayes' theorem Dr. Jimmy Risk Cal Poly Pomona Genetic Algorithm Applications of Gaussian P 5/25/23 4/32

LRZ 2018 Smoothing

$$m(\mathbf{x}) = \beta_0 + \beta_{ag} x_{ag}$$
(3)
$$k(\mathbf{x}, \mathbf{x}') = \eta^2 \exp\left(-\frac{(x_{ag} - x'_{ag})^2}{2\ell_{ag}^2} - \frac{(x_{yr} - x'_{yr})^2}{2\ell_{yr}^2}\right)$$
(4)

э

- Covariance functions are valid Kernel functions⁴ and vice versa
- Govern the underlying properties of the prior and posterior process f
- This can be seen e.g. through the posterior mean:

$$m_*(\cdot) = \mathcal{K}(\cdot, \mathbf{X}) \underbrace{\left[\mathcal{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_n\right]^{-1} \mathbf{y}}_{:=\mathbf{c}},$$
$$= \sum_{i=1}^n c_i k(\cdot, \mathbf{x}_i)$$

• Governs smoothness, periodicity, etc., of process itself

 ⁴e.g. used in support vector machines, kernel ridge regression → < ≥ > < ≥ > < ≥ < 2 >
 > < 0 < 0</td>

 Dr. Jimmy Risk Cal Poly Pomona
 Genetic Algorithm Applications of Gaussian P
 5/25/23
 6/32

A Few Basic Kernels

Kernel Algebra

• The space of positive definite functions enjoy a rich collection of algebraic properties

.

$$k_1, k_2$$
 p.d. kernels \Rightarrow

$$\begin{cases} k_1 + k_2 \text{ is a p.d. kernel} & (\text{closed under addition}) \\ k_1 \cdot k_2 \text{ is a p.d. kernel} & (\text{closed under mult.}) \end{cases}$$

Kernels in the Mortality Setting

- Kernel use already exists historically (possibly unknowingly)
- E.g. time series covariance functions define kernels!
- Ex. Cairns-Blake-Dowd (CBD) (2006)

$$f(\mathbf{x}) = \kappa^{(1)}_{x_{yr}} + (x_{ag} - \overline{x_{ag}})\kappa^{(2)}_{x_{yr}}$$

If $(\kappa_{\scriptscriptstyle Xyr}^{(1)},\kappa_{\scriptscriptstyle Xyr}^{(2)})$ is multivariate random walk, then

$$k_{CBD}(\mathbf{x}, \mathbf{x}') = \operatorname{cov}(f(\mathbf{x}), f(\mathbf{x}')) =$$

= $[\sigma_1^2 + \rho \sigma_1 \sigma_2 (x_{ag} + x'_{ag} - 2\overline{\mathbf{x}_{ag}}) + (x_{ag} - \overline{\mathbf{x}_{ag}})(x'_{ag} - \overline{\mathbf{x}_{ag}})\sigma_2^2] \cdot \min(x_{yr}, x'_{yr}).$

Kernels in the Mortality Setting (Part II)

Definition

A separable kernel over \mathbb{R}^d is one that can be written as a product: $k(\mathbf{x}, \mathbf{x}') = \prod_{j=1}^d k_j(x^{(j)}, x^{'(j)})$, where $x^{(j)}$ is the *j*th coordinate of \mathbf{x} .

- The global kernel is separated as a product over its dimensions, each having its own kernel.
- Provides a rich interpretation

Earlier example:

$$k(\mathbf{x}, \mathbf{x}') = \eta^2 \exp\left(-\frac{(x_{ag} - x'_{ag})^2}{2\ell_{ag}^2} - \frac{(x_{yr} - x'_{yr})^2}{2\ell_{yr}^2}\right)$$
$$= k_{RBF}(x_{ag}, x'_{ag}; \ell ag) \cdot k_{RBF}(x_{yr}, x'_{yr}; \ell_{yr})$$

- Two smooth components in each coordinate;
- Correlations decay rapidly as age distance increases;
- Similar for year.

10/32

Kernels in the Mortality Setting (Part II)

Definition

A separable kernel over \mathbb{R}^d is one that can be written as a product: $k(\mathbf{x}, \mathbf{x}') = \prod_{j=1}^d k_j(x^{(j)}, x^{'(j)})$, where $x^{(j)}$ is the *j*th coordinate of \mathbf{x} .

- The global kernel is separated as a product over its dimensions, each having its own kernel.
- Provides a rich interpretation

Earlier example:

$$k(\mathbf{x}, \mathbf{x}') = \eta^{2} \exp\left(-\frac{(x_{ag} - x'_{ag})^{2}}{2\ell_{ag}^{2}} - \frac{(x_{yr} - x'_{yr})^{2}}{2\ell_{yr}^{2}}\right)$$
$$= k_{RBF}(x_{ag}, x'_{ag}; \ell_{ag}) \cdot k_{RBF}(x_{yr}, x'_{yr}; \ell_{yr})$$

- Two smooth components in each coordinate;
- Correlations decay rapidly as age distance increases;
- Similar for year.

- For many tasks, precise kernel is of secondary importance
- Default of multiplicative (separable) stationary kernels are reasonable starting point; sufficient for many tasks
- For some tasks, the kernel plays a more significant role:
 - Longer-range extrapolation
 - Short-term mortality improvement (kernel smoothness dramatically affects results)
- Interested in mortality dependence structure from fitting GP models:
 - Smoothness of mortality experience across Age and Year
 - Models for Cohort effects
 - Additive structures
 - Comparing populations (how does discovered structure vary among country/gender)

Too Many Kernels

Kernel Name	Abbv.	Formula $k(x, x'; \theta)$	Properties
Matérn-1/2	M12	$\exp\left(-\frac{ x-x' }{\ell_{\text{len}}}\right), \ell_{\text{len}} > 0$	<i>C</i> ⁰
Matérn-3/2	M32	$\left(1+\frac{\sqrt{3}}{\ell_{\mathrm{len}}} x-x' \right)\exp\left(-\frac{\sqrt{3}}{\ell_{\mathrm{len}}} x-x' \right), \ell_{\mathrm{len}}>0$	C^1
Matérn-5/2	M52	$\left(1 + \frac{\sqrt{5}}{\ell_{\text{len}}} x - x' + \frac{5}{3\ell_{\tau}^2} x - x' ^2\right) \exp\left(-\frac{\sqrt{5}}{\ell_{\text{len}}} x - x' \right)$	<i>C</i> ²
Cauchy	Chy	$\frac{1}{1+ x-x' ^2/\ell_{\rm len}^2}, \ell_{\rm len} > 0$	C^{∞}
Radial Basis	RBF	$\exp\left(-\frac{(x-x')^{\frac{1}{C+2}}}{2\ell_{1\mathrm{op}}^2}\right), \ell_{\mathrm{len}} > 0$	C^{∞}
AR2	AR2	$\exp(-\alpha x-x')\left\{\cos(\omega x-x')+\frac{\alpha}{\omega}\sin(\omega x-x')\right\}$	Periodic, C^1
Linear	Lin	$\sigma_0^2 + x \cdot x', \sigma_0 > 0$	Non-stationary
Minimum	Min	$t_0^2 + \min(x, x'), t_0 > 0$	Non-stat, C ⁰
Mehler	Meh	$\exp\left(-rac{ ho^2(x^2+x'^2)-2 ho xx'}{2(1- ho^2)} ight), -1\leq ho\leq 1$	Non-stationary

- Can use x_{ag}, x_{yr} , or x_{co} as input
- Each offers a different mortality interpretation
- Can combine kernels with addition and multiplication

Too many kernels!

Genetic Algorithm for Kernels

Employ genetic algorithm for kernel search

(Generation 0) Randomly generate ng kernels uniformly⁷

(Generation g, g > 0) For n_g times:

- Randomly sample T parents from the i 1th generation
- Mutate or crossover the "fittest"⁸ parents
- Offspring inserted into generation g

• Repeat for all
$$g = 1, 2, \ldots, G$$

Parameter	Value	Notes
Population Size Generations Tournament Size	$n_g = 200$ G = 20 T = 7 D = 1.2	Number of individuals per generation Number of generations Run double tournament; select smaller winner w/ prob. D/2 Smaller is winner with probability 0.60

⁷Choosing 2–7 base kernels and coordinates, and combining with + or · randomly ⁸Using BIC as the criterion Dr. Jimmy Risk Cal Poly Pomona Genetic Algorithm Applications of Gaussian P _____5/25/23 13/32

Genetic Algorithm for Kernels

Employ genetic algorithm for kernel search

- (Generation 0) Randomly generate ng kernels uniformly⁷
- **(Generation** g, g > 0) For n_g times:
 - Randomly sample T parents from the i 1th generation
 - Mutate or crossover the "fittest"⁸ parents
 - Offspring inserted into generation g

Parameter	Value	Notes
Population Size Generations Tournament Size	$n_g = 200$ G = 20 T = 7 D = 1.2	Number of individuals per generation Number of generations Run double tournament; select smaller winner w/ prob. D/2 Smaller is winner with probability 0.60

Employ genetic algorithm for kernel search

- (Generation 0) Randomly generate ng kernels uniformly⁷
- **(Generation** g, g > 0) For n_g times:
 - Randomly sample T parents from the i 1th generation
 - Mutate or crossover the "fittest"⁸ parents
 - Offspring inserted into generation g

@ Repeat for all
$$g = 1, 2, \ldots, G$$

Parameter	Value	Notes
Population Size Generations Tournament Size	$n_g = 200$ G = 20 T = 7 D = 1.2	Number of individuals per generation Number of generations Run double tournament; select smaller winner w/ prob. D/2 Smaller is winner with probability 0.60

Figure 1: Representative compositional kernels and GA operations. Bolded red ellipses indicate the node of X (or Y) that was chosen for mutation or crossover.

イロト イポト イヨト イヨト

Probability	GA Operation	Notes
$p_{c} = 0.45$	Crossover	
$p_{s} = 0.2$	Subtree Mutation	
$p_h = 0.1$	Hoist Mutation	
$p_p = 0.05$	Point Mutation	Each node is mutated with another node of same arity with prob. q_p
$p_r = 0.15$	Respectful Point Muta- tion	Each node is mutated with an- other node of same arity and same (age, year, cohort) with prob. q_r
$p_o = 0.05$	Сору	
$q_p = 0.25$	Point Replace	
$q_r = 0.35$	Respectful Replace	
$q_a = 0.5$		Probability that add/mul is included when initializing trees

Table: Operator specific GA hyperparameters with description. Note that $p_c + p_s + p_h + p_p + p_r + p_0 = 1$.

イロト 不得 ト イヨト イヨト

Synthetic Experiments

Synthetic Experiments

- Generate synthetic mortality data with specified k_0
- Run GA to see if k_0 can be recovered

Exprmnt	Ground Truth Kernel (k 0)	$\sigma^2(\mathbf{x})$	β_0	$\beta_{\rm ag}$
SYA	$0.04 \cdot \text{RBF}_a(13.6) \cdot \text{RBF}_y(9.0)$	0.001	-11.7	0.1
SYB	$0.08 \cdot \text{RBF}_a(19.93) \cdot M12_y(400) + 0.02 \cdot$	0.0004	-11.4276	0.0875
	$M52_{c}(5)$			
SYC	$0.0134 \cdot M52_a(38.49) \cdot Min_y(26.33) \cdot$	$1.0783/D_{x}$	-12.58	0.0994
	$M12_{c}(6062.76)$			
	$\cdot \operatorname{Meh}_c(0.8483)$			

Table: Description of synthetic data sets. Data is generated as multivariate normal realizations with parametric mean function $m(\mathbf{x}) = \beta_0 + \beta_{ag} x_{ag}$. SYA and SYB are homoskedastic. In generating SYC's heteroskedastic noise, $D_{\mathbf{x}}$ comes from the JPN Female data.

GA Convergence

Figure: GA convergence for JPN Female run (later). Convergence for synthetic experiments was quicker than these plots show.

э.

	SYA-1	L		SYA-2	2
BIC - 2034.23 -2034.04 -2031.82 -2031.29 -2031.09	$ \widehat{BF}(k, k_0) 1.0000*** 0.8264*** 0.0902* 0.0526* 0.0433* $	Kernel RBF_aRBF_y M52 _a RBF _y M52 _a M52 _y M52 _a RBF _a RBF _y M52 _a M52 _a RBF _y	BIC -2066.93 - 2066.76 -2064.63 -2064.24 -2063.88	$\widehat{BF}(k, k_0) \\ 1.1907^{***} \\ 1.0000^{***} \\ 0.1216^{**} \\ 0.0801^{*} \\ 0.0561^{*} \\ \end{bmatrix}$	Kernel M52 _a RBF _y RBFyRBFa M52 _a M52 _a RBF _y M52 _a RBF _a RBF _y M52 _a M52 _a RBF _y

Table: Top five fittest non-duplicate kernels for the first synthetic case study SYA. Bolded is $k_0 = \text{RBF}_y \text{RBF}_a$, the true kernel used in data generation. SYA-1 and -2 denote the realization trained on.

- SYA: $k_0 = \text{RBF}_y \text{RBF}_a$
- Goals:
 - Generate two surfaces to check consistency
 - Investigate mortality "smoothness"

- SYB results: correctly identify age · year + cohort
- SYC results: correctly identify # terms, multiplicative structure, nonstationarity
- Closely recover ground truth GP hyperparameters
- Observe substitution effect (BIC-wise plausible alternatives)

All data is from HMD⁹ using years 1990–2018 and ages 50–84

- **1** Japan Female \mathcal{K}_f
 - Analyze smoothness, nonstationary, additive structure, etc.
 - Robustness: Rerun
 - Compare with \mathcal{K}_r (is remainder $\mathcal{K}_f \setminus \mathcal{K}_r$ needed?)
 - Robustness: Expand to 1988-2018 and 48-86
 - Compare with Japan Males
- OS Males
- Sweden Females
- Ompare across all country+gender pairs analyzed
- Solution Necessity of cohort

⁹Human mortality database https://www.mortality.org/ $\langle \mathcal{P} \rangle \land \mathbb{R} \rangle \land \mathbb{R}$

Japanese Female Preliminary Results

(G = 20 generations, $n_g = 200$ individuals per generation, analyze over $20 \cdot 200 = 4000$ results)

		Japan Female HMD Dataset f \mathcal{K}_r	or 1990-2018 ;	and Ages	50-84 K _f
BIC	BF	Kernel	BIC	BF	Kernel
-2725.288	0.995	M52 _a (RBF _y M12 _y)M12 _c	-2725.293	1	M52 _a (Chy _y M12 _y)M12 _c
-2725.270	0.977	M52 _a (M52 _y M12 _y)M12 _c	-2725.270	0.977	M52 _a (M52 _y M12 _y)M12 _c
-2725.233	0.941	M52 _a (RBF _y Miny)M12 _c	-2725.221	0.931	M52 _a (M52 _y Miny)M12 _c
-2725.221	0.931	M52 _a (M52 _y Min _y)M12 _c	-2724.623	0.512	M52 _a (M52 _y M12 _y) Min _c
-2724.640	0.520	M52 _a (M52 _y M12 _y) Min _c	-2724.510	0.457	M52 _a (M32 _y M12 _c)M12 _c

Dr. Jimmy Risk Cal Poly Pomona

Japanese Female Top Kernel Posterior Forecasts

Figure: Predictions from the top 10 kernels in \mathcal{K}_f for JPN Females Age 65. *Left:* predictive mean and 90% posterior interval from the top-10 kernels. For comparison we also display (black plusses) the 5 observed log-mortality rates during 2014–2019. *Right:* 4 sample paths from 3 representative kernels.

Japanese Female Best Kernel Heatmaps

Figure: Left: residuals from the best kernel in \mathcal{K}_f . Right: residuals from a run that removed all cohort kernels.

Figure: Implied prior correlation of the best kernel.

Japanese Female Comparative Results

Range	BIC max	BIC min	length	addtv. comp's	non- stat.	all age	all year	all coh	rough age	rough year	rough cohort
				JPI	N Female						
1-10 1-50 51-100 101-150 151-200	-2723.68 -2720.64 -2718.24 -2717.03 -2715.77	-2725.29 -2725.29 -2720.62 -2718.17 -2717.01	4.00 4.34 4.60 5.02 5.10	1.00 1.08 1.20 1.14 1.48	0% 10% 18% 4% 12%	1.00 1.12 1.12 1.30 1.28	1.80 1.90 2.20 2.18 2.36	1.20 1.32 1.28 1.54 1.46	0% 0% 6% 6%	100% 100% 100% 98% 100%	100% 100% 100% 100%
	JPN Female Rerun										
1-10 1-50 51-100	-2723.05 -2719.82 -2718.30	-2725.29 -2725.29 -2719.82	4.00 4.14 4.46	1.00 1.08 1.26	0% 10% 8%	1.00 1.08 1.14	1.60 1.58 1.62	1.40 1.48 1.70	0% 0% 6%	100% 98% 100%	100% 100% 100%
1-10 1-50 51-100	-2724.11 -2721.19 -2718.06	-2725.27 -2725.27 -2721.19	4.00 4.48 4.72	1.00 1.10 1.50	0% 8% 18%	1.00 1.14 1.16	1.70 1.96 1.96	1.30 1.38 1.60	0% 0% 0%	100% 100% 100%	100% 100% 100%
1-10 1-50 51-100	-2724.11 -2716.84 -2714.96	-2725.29 -2725.29 -2716.58	4.00 4.42 4.70	1.40 1.12 1.16	40% 18% 12%	on D _{rob} 1.00 1.14 1.18	1.50 1.64 1.68	1.50 1.64 1.84	0% 0% 0%	100% 100% 100%	100% 100% 100%

Dr. Jimmy Risk Cal Poly Pomona Genetic Algorithm Applications of Gaussian P

Full Comparison

Range	BIC max	BIC min	length	addtv. comp's	non- stat.	all age	all year	all coh	rough age	rough year	rough cohort
				JP	N Femal	e					
1-10 1-50 51-100	-2723.68 -2720.64 -2718.24	-2725.29 -2725.29 -2720.62	4.00 4.34 4.60	1.00 1.08 1.20	0% 10% 18%	1.00 1.12 1.12	1.80 1.90 2.20	1.20 1.32 1.28	0% 0% 0%	100% 100% 100%	100% 100% 100%
				J	PN Male						
1-10 1-50 51-100	-2978.43 -2975.36 -2974.25	-2980.53 -2980.53 -2975.32	4.10 4.26 4.60	1.00 1.10 1.00	0% 0% 0%	1.00 1.06 1.04	1.60 1.70 2.14	1.50 1.50 1.42	0% 18% 64%	100% 100% 100%	100% 100% 100%
				ι	JS Male						
1-10 1-50 51-100	-3163.54 -3160.32 -3157.93	-3170.29 -3170.29 -3160.24	5.70 5.78 6.14	2.30 2.24 2.38	0% 0% 2%	1.50 1.40 1.46	1.50 1.54 1.72	2.70 2.84 2.96	100% 100% 100%	100% 100% 100%	100% 100% 98%
	SWE Female										
1-10 1-50 51-100	-1624.34 -1622.74 -1622.04	-1625.57 -1625.57 -1622.74	3.00 3.02 3.42	1.00 1.00 1.04	0% 6% 16%	1.00 1.00 1.10	1.00 1.24 1.38	1.00 0.78 0.94	0% 0% 0%	100% 100% 100%	0% 14% 6%

Table: Results from GA runs on JPN Male, US Male and SWE Female. Throughout we search within the full set \mathcal{K}_f .

▶ ≣ ৩৭ে 25/32

< □ > < □ > < □ > < □ > < □ > < □ >

JPN Female vs USA Male Kernel Length Properties

Figure: Properties of the top 100 kernels found by GA.

Comparison Across Gender (Frequency of Appearance)

Figure: Frequency of appearance of different kernels from \mathcal{K}_f

Comparison Across Countries (Frequency of Appearance)

Figure: Frequency of appearance of different kernels from \mathcal{K}_f

5/25/23

28 / 3<u>2</u>

- GP-GA works to discover structures in mortality surfaces.
- Real world data contains: smooth age, rough year, rough cohort
- "Residual kernel" often present
- GA is confident in overall structure (e.g. purely multiplicative, size)

5/25/23

- US Males contain exceptions
- Kernel replacement effect exists. E.g.
 - Min vs M12
 - Chy vs RBF vs M52

- Jointly model countries using multi-output Gaussian processes
- Kernel choices
 - Refining \mathcal{K}_f
 - Including more kernels (express more structure)

$$\begin{split} &\exp(-[x_{ag}, x_{yr}]^\top A[x_{ag}, x_{yr}]) & (\text{non-separable example}) \\ &\sigma(x)k_1(x, x')\sigma(x') + \overline{\sigma}(x)k_2(x, x')\overline{\sigma}(x') & (\text{changepoint kernel}) \end{split}$$

• Analyze limitations of GA and hyperparameters

Thank You!

Our work:

- Risk, Jimmy and Ludkovski, Mike. "Expressive Mortality Models through Gaussian Process Kernels". Working version available on request.
- Ludkovski, Mike, Jimmy Risk, and Howard Zail. "Gaussian process models for mortality rates and improvement factors." ASTIN Bulletin: The Journal of the IAA 48.3 (2018): 1307-1347.

Top Kernels Across Countries

Pop'n/Search Set	N _{pl}	Top Kernel
JPN Female \mathcal{K}_r	90	$0.464 \cdot M52_a(1.1) \cdot RBF_y(1.33)M12_y(62.51) \cdot M12_c(118.06)$
JPN Female \mathcal{K}_f		$0.4638 \cdot M52_{a}(1.11) \cdot Chy_{y}(1.95)M12_{y}(62.42) \cdot M12_{c}(117.11)$
JPN Male \mathcal{K}_r	89	$0.1491 \cdot M52_a(0.95) \cdot RBF_y(1.15)M12_y(26.24) \cdot M12_c(24.90)$
JPN Male \mathcal{K}_f	112	$0.2130 \cdot M52_a(1.09) \cdot M12_y(39.09) \cdot M32_c(0.86)M12_c(40.73)$
US Male \mathcal{K}_r	57	$0.017 \cdot M12_a(5.04) \cdot M52_y(0.50)M12_y(10.33) \cdot M52_c(0.36)M12_c(5.00)$
US Male \mathcal{K}_f	35	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
SWE Female \mathcal{K}_r SWE Female \mathcal{K}_f	200+ 200+	$0.2527 \cdot \text{RBF}_{a}(0.52) \cdot \text{M12}_{y}(73.74) \cdot \text{RBF}_{c}(0.62)$ $0.2094 \cdot \text{Chy}_{a}(1.05) \cdot \text{M12}_{y}(67.27) \cdot \text{Meh}_{c}(0.60)$

Dr. Jimmy Risk Cal Poly Pomona Genetic Algorithm Applications of Gaussian P