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Outline

Gaussian Process Regression
Example: Modeling Mortality Surface
Example: Pricing Deferred Annuities

Ludkovski GPs/Act Sci



../ucsbwave-cmyk.png

Intro GP GPs and Nested Simulation RSM

Statistical Learning

Input-Output “black box”: Y (x) = f (x) + ε(x)

Learn the latent f through employing a stochastic sampler Y
1 The inputs X are the sampled locations/initial simulation states
2 The response Y are observations
3 Y has intrinsic noise ε due to measurement error, or randomness

that is part of the simulation
4 E[ε] = 0: so f (x) is the expected response

Goal: Recover f based on the data (x1:N and y1:N )
Solution: choose an approximation architecture f̂ ∈ H
Choose loss function L
(Choose a simulation design: x1:N )
Set f̂ = arg minf∈H L(f |(x , y)1:N)
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Intro GP GPs and Nested Simulation RSM

Response Surface Modeling

Y (x) := f (x) + ε(x).

Conditional Expectation f = E[Y |x ]: lots of applications in finance:
American options, sequential stochastic control, XVA, et cetera.
Nested Simulation
Backward stochastic differential equations
Capital Requirements/Insurance

Also appears in other fields:
Metamodeling/Statistical Emulation/Surrogates
OR: Simulation Optimization
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Intro GP GPs and Nested Simulation RSM

What is an Emulator?

Classical regression – data is given and try to fit the “best curve”
In metamodeling generating data (through efficient simulations) is
part of the solution
Also, typically look for a non-parametric model (dense H)
Used extensively in machine learning; simulation optimization,
computational statistics
See eg Kleijnen (2015), Williams and Rasmussen (2006), Powell
and Ryzhov (2012)
Connects to CS, OR, stats communities (language barriers!)
Can be applied in non-stochastic contexts: DACE (design and
analysis of computer experiments)
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Modeling f

Must impose some structure on f (X is a "nice" process, so f is
"smooth")

Project onto basis functions: f (x) =
∑

i aiHi(x)

Smoothing spline (piecewise cubic)
Piecewise linear
Piecewise constant f (x) =

∑
i ai1{x∈Ri}

Fully nonparametric (kernel): f (x) =
∑

i K (x , x i)y i

Gaussian process
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Gaussian Process Model

The latent f lives in the function space HK – Gaussian RKHS
Means f (·) is a realization of a Gaussian random field with a
covariance structure defined by K , H = span(K (·, x) : x ∈ X)

K (x , x ′) := E[f (x)f (x ′)] controls the spatial decay of correlation,
i.e. smoothness of f
e.g Gaussian kernel K (x , x ′) = τ2 exp(−‖x−x ′‖2

2θ2 ) – elements of
HK are C∞, with lengthscale θ and fluctuation scale τ .
Penalized L2 projection:
f̂ = arg minf∈H

∑N
i=1(f (x i)− y i)2 + ‖f‖2K/2;

Representer theorem implies that f̂ (x) =
∑N

i=1 y iwiK (x , x i) –
linear model in the infinite basis expansion defined by K
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Bayesian Interpretation

Think of f ∼ GP(0,K ) as a random element in HK

Gaussian prior f (x) ∼ N(0, τ2)

Below: θ = 2, τ = 1.5 (solid = mean; dashed blue = 95% CI)

Ludkovski GPs/Act Sci



../ucsbwave-cmyk.png

Intro GP GPs and Nested Simulation

Bayesian Interpretation

Condition on observations G ≡ (x , y)1:N Y (x) = f (x) + ε(x) where
ε(x) ∼ N(0, σ2(x)) (below σ ≡ 0.2)

The posterior is a measure on HK (i.e function-valued)

Posterior is still a Gaussian process
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GP Equations

Have analytic formulas for the posterior distribution of
f (x)|G ∼ N(m(x), v2(x))

mean m(x) = ~k(x)T (K + Σ)−1~y

cov v(x , x ′) = K (x , x ′)− ~k(x)T (K + Σ)−1~k(x ′)

Kij = K (x i , x j), Σ = diag(σ2(x i)), ki = K (x , x i)

Visually has a “football” shape– v2(x) has local minima at x i ’s.
The mean m(x) is a linear combination of kernel eigenfunctions
centered at design sites
Outside the domain X′, revert to prior m(x)→ 0, v2(x)→ τ2
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More Data
Global consistency – converge to the truth as N →∞
Optimized Matern-5/2 kernel
K (x , x ′; τ, θ) = τ2(1 + (

√
5 + 5/3)‖x − x ′‖2θ

)
· e−

√
5‖x−x ′‖θ
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GP Model

Given the kernel, the posterior is in closed-form
Automatically determines spatial smoothness of f : lengthscale θ
controls correlation decay
Coherently deals with in-sample smoothing and out-of-sample
forecasting (+uncertainty quantification)
Can incorporate a non-zero mean function, or estimate a “trend”
like in least-squares
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Fitting a GP

Need to know the kernel hyperparameters – τ, θ’s, et cetera.
Solution I: Use MLE (nonlinear optimization problem).
Solution II: Specify priors and use a fully Bayesian method
(requires MCMC)
Need the sampling noise σ2(x) – use batching/replications to
estimate
GP is expensive compared to e.g LM; complexity is O(N3) for a
design of size N
We used DiceKriging package in R – off-the-shelf use
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Mortality Surface

Raw mortality table has two main inputs: Age and Year
For each Age/Year have Dij is the # of deaths and Eij the number
of exposed-to-risk
Model the latent mortality state µij : Dij/Eij = eµij + εij

Age Year Deaths Exposed Crude Rate
65 years 2013 25036 1616005 0.015493
66 years 2013 27466 1683234 0.016317
67 years 2013 22837 1231339 0.018546
68 years 2013 23613 1208652 0.019537
69 years 2013 25372 1173960 0.021612
70 years 2013 27596 1198287 0.02303
71 years 2013 26559 1036368 0.025627
72 years 2013 25971 937562 0.027701
73 years 2013 26303 882726 0.029797
74 years 2013 27145 829509 0.032724
75 years 2013 27945 785563 0.035573
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Mortality Surface

Dataset: Age: 50–84, Year: 1999–2011
In general: mortality is improving (people are living longer)
How fast (mortality improvement factor)? Will this continue in
2016? In 2020? In 2040?
What is the uncertainty about e.g life expectancy of a 65 year old
today?
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Features of a GP Model

Historical smoothed mortality curves by calendar year: m(x1:N)

Credible interval around such curves: posterior variance v2(x1:N)

Project the curves forward m(x ′), v2(x ′) for future years/ages
Generate stochastic future forecasts (sample from f (x ′)|G as a
future mortality scenario)
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Mortality Modeling

Work in progress with Howard Zail (Elucidor)
Believe this is a viable alternative to existing methods and may
become a new SOA-sanctioned approach
Bayesian perspective is a plus:

I Domain expertise = prior
I Updating the tables based on new data
I Working with bespoke pension pools
I Coherently merging multiple datasets
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Part II: Nested Simulation
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Nested Simulation

Generate a multi-level forest of Monte Carlo simulations
The outer level are top-level scenarios
Inner level simulations are used to approximate some quantity of
interest given the global scenario
For example, Value-at-Risk calculations (outer = economic
scenarios on [0,T ]; inner = portfolio value as of T )
Nesting leads to extremely computational demands
One solution is to build a metamodel for the inner-level simulations
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Valuing Deferred Annuities

Annuity: pay $1 as long as the insured is alive

Survival probability P(t ,u) = E
[
exp

(
−
∫ t

0 µ(s,u + s) ds
)]

a0 =
∑

t P(t ,u)B(0, t), where B(0, t) is the bond price
Model the force of mortality µ(t ,u)

Typically µ comes from a multi-factor stochastic model (e.g. using
auto-regressive time-series or diffusions); plus age-modeling in
terms of a
No closed-form expression for P(t ,u) – need to be also evaluated
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Valuing Deferred Annuities

Today: aged 45. Will receive a pension benefit starting at age 65.
What is the NPV of the pension?
This is a 20-year deferred life-annuity

P(τu > T | τu > t ,Ft ) = E
[

exp
(
−
∫ T

t µ(s,u + s)
)∣∣∣Xt

]
.

=

P(X (t); t ,T ,u) – functional of the trajectory of X between T and
T + s
Write NPV .

= E[e−rT · a(XT ,T ,u)] = E[E[aT |XT ]] – first compute
annuity prices for 65-year olds as a function of XT :
f (x)

.
= E[F (T ,X·)|XT = x ]

Then integrate over the distribution of XT :
E[F (T ,X·)|X0] =

∫
Rd f (x)pT (x |X0)dx

Metamodeling: construct f̂ (x) ' E[aT |XT = x ]
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Traditional Nested Approach

Outer: E[F (T ,X·)|X0] ' 1
Nout

∑Nout
m=1 f (x (m))

Inner: f (x (m)) ' 1
Nin

∑Nin
n=1 F (T , x (m),n

· ), m = 1, . . . ,Nout

x (m),n
t , t ≥ T are Nin independent trajectories of X

Simulation budget is O(Nout · Nin)

An emulation framework generates a fitted f̂ (·) by solving
regression equations over a training dataset
{x (n),F (T , x (n)(·))}Ntr

n=1 of size Ntr

Emulator budget Ntr + Nout , plus regression overhead
provides a principled statistical framework for optimizing,
assessing and improving such two-level simulations
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Contribution

Practitioners often compute f̂ (x) by an approximation such as

E[exp(−m(t , x))] ≈ exp(−E[m(t , x)])

which allows closed-form expressions for annuity prices
No assessment of the approximation error
New proposal (L-Risk 2016 IME): use GP to build a flexible
metamodel for f
Related: computing Value-at-Risk of the annuity
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Challenges

Challenge 1: stochastic mortality models are often
multi-dimensional (e.g. APC = Age-Period-Cohort version of
Lee-Carter has 3 factors)

m(t ,u) = β
(1)
u + 1

na
κ(2)(t) + 1

na
γ(3)(t − a), with κ, β, γ stochastic

processes
Challenge 2: calibration of stochastic mortality is nontrivial. Cairns
et al (2011) advocate re-calibration using the simulated trajectory
X0:T (breaking Markov structure)
In other words βu = βu(X0:T );, et cetera.
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GP for Annuities
Generate a design x1:Ntr,1

At each x1:Ntr,1 generate Ntr ,2 trajectories from XT :T and
corresponding NPV a(XT )

Average/compute variance to be entered into the GP metamodel:

y (n) .=
1

Ntr ,2

Ntr,2∑
j=1

F (T , x (n),j(·)

σ̂2(x (n))
.

=
1

Ntr ,2 − 1

Ntr,2∑
j=1

{
y (n) − F (T , x (n),j(·))

}2

σ̂2(x (n))/Ntr ,2 is proxy for the variance of the batch mean y (n)

Fit a GP for a(XT ) (total of Ntr ,1 × Ntr ,2)

Generate Nout scenarios X0:T and average: â0 = 1
Nout

∑Nout
n=1 f̂ (xn

T )
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Illustration: 1D µT following a jump-diffusion

Analytic approximation has a fixed, unknown bias
Monte Carlo approximations will converge to the truth as N →∞
Also asymptotically unbiased
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GPs with Trend

Generalize to f (x) = X (x) + β0 +
∑p

j=1 βjhj(x) where βj are
constants to be estimated, and hj(·) are given basis functions
Trend component allows to incorporate domain knowledge about
the response, while the mean-zero GP component X offers a
flexible nonparametric model for the residuals
Option 1: variance reduction by using the analytic mean F (E[X·])
as trend
Option 2: estimate β′j s simultaneously with the GP equations
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Two Population Longevity Hedge Portfolio with
stochastic mortality factors

Ntr = 1000 Ntr = 8000
Type Bias

√
IMSE Bias

√
IMSE

Analytic A1 -2.101e-02 3.460e-02 -2.101e-02 3.460e-02
Analytic A2 3.629e-03 3.733e-03 3.629e-03 3.733e-03

Thin Plate Spline -1.050e-03 1.437e-02 4.431e-04 3.294e-03
Universal Kriging -1.156e-03 1.872e-02 2.556e-03 1.454e-02

Simple Kriging 2.148e-03 2.308e-03 9.229e-04 1.469e-03
Least Squares MC -1.050e-03 1.437e-02 5.324e-04 3.295e-03

Tab: Performance of analytic estimates and surrogate models for hedge portfolio values in the
two-population model case study. Numbers reported are based on Nout = 1000 simulations of
Z (T ) with a Monte Carlo benchmark. Ntr is allocated into Ntr,1 = N2/3

tr training points and

Ntr,2 = N1/3
tr Monte Carlo batches per training point. Simple kriging model uses A2 estimator as

trend. For comparison purposes, the average value of the hedge portfolio was 0.1995.
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Variable Annuity with Mortality, Stochastic Interest
Rate, Stock Price Factors

Fig: Marginal dependence plot of f (Z (1)) versus r(1), where f (Z (1)) and is estimated through
a smoothed Monte Carlo benchmark with Nout = 25,Nin = 10, 000. The two emulator models
used Ntr,1 = Ntr,2 = 100. The 2-dim. experimental design D for the emulators was empirical.
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Take-Aways

GP is a flexible, off-the-shelf regression framework
Many opportunities to apply emulation in insurance
Lots more opportunities in this direction

Metamodeling =

Regression

+

Stochastic Grid

THANK YOU!
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Take-Aways

GP is a flexible, off-the-shelf regression framework
Many opportunities to apply emulation in insurance
Lots more opportunities in this direction

Metamodeling = Regression + Stochastic Grid

THANK YOU!
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