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US Mortality Improvement
MP-2014 / MP-2015

Published by SOA
US CDC Data
MP-2014 uses years 1950-2009
Plans to update scales at least triennially; two years of additional
CDC data shows drastic change in later years

I MP-2015 emerges
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Goal:

Model US Mortality data using Gaussian Process (GP) regression
Bayesian
Provides posterior Gaussian distribution for input of any age and
year
Offers easy analysis of both mortality and mortality improvement
simultaneously
Gaussian distribution implies one-year mortality improvement
factors remains Gaussian
Differentiable: can provide instantaneous mortality improvement
(still Gaussian)
Spatial approach inherently handles missing and edge data
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Typical Regression Assumption

Hypothesis:
y = f (x) + ε

Observe y = y1:N for input locations x = x1:N

Want to understand the function f
I e.g. f (x) = β0 + β1x (simple linear regression)

ε is noise: can’t observe f (x) directly
Assume ε ∼ N

(
0, σ2(x)

)
(often σ(x) ≡ σ ∈ R+)

Our assumption: f is a Gaussian Process (modeling log-mortality)
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Gaussian Process

Defined as a set of random variables {f (x)|x ∈ Rd}
Any finite subset has a multivariate Gaussian distribution with
covariance C(·, ·):

f (x1), . . . , f (xn) ∼ N
(

(m(x1), . . . ,m(xn)),C(x ,xT )
)
.

Fix mean function m and covariance kernel C; this provides a
prior distribution
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Posterior
Observe pairs (y ,x) = ((y , x)1:N)

I (e.g. y = historic log–mortality and x = (age, year))
Gaussian assumptions imply that marginally for any input x

f (x)|(y ,x) ∼ N
(

m∗(x), s2
∗(x)

)

m∗ and s2
∗ are the posterior mean and variance functions{

m∗(x)
.

= c(x)T (C + Σ)−1y ;

s2
∗(x)

.
= C(x , x)− c(x)T (C + Σ)−1c(x),

(1)

where
c(x)

.
=
(

C(x , x i)
)

1≤i≤N
(covariances between x and inputs x)

C .
=
(

C(x i , x j)
)

1≤i,j≤N
(covariances between inputs x)

Σ
.

= diag
(
σ2(x i)

)
(diagonal matrix of noise variance)

(2)
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Covariance Kernels & Parameter Estimation
Common choice is squared-exponential (or Gaussian) covariance
kernel

C(x , x ′) = η2 exp

(
−

(xag − x ′ag)2

2θ2
ag

−
(xyr − x ′yr )2

2θ2
yr

)
.

Knowing mortality at x will greatly influence mortality at
“neighboring" x ’s

I e.g. knowing mortality for a 80 year old in 2015 greatly aids in
prediction of a 85 year old’s mortality in 2016; knowing a 50 year
old’s mortality in 2000 has a nearly non-existent effect

Implies hyperparameter family of Θ
.

= (θag , θyr , η
2, σ2)

I Also mean function hyperparameters (if included)
Estimates are fit using MLE; likelihood can be written out explicitly
due to Gaussian assumptions

I Done using R package DiceKriging
Alternatively, can use Bayesian approach with priors on Θ

I Separate package using STAN language
I Leads to non-Gaussian posterior
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Illustrative Example

Goal: Learn f (x) = sin(x) over domain [0,2π]

Observe realizations of

y = sin(x) + ε

where ε ∼ N(0,0.01x)

Try:
I x = 0.5,1,1.5, . . . ,5.5,6;
I x = 0.25,0.5,0.75, . . . ,5.75,6

Risk GP Mortality



Introduction Gaussian Processes Application to Mortality Data Closing Remarks

Illustrative Example
y = sin(x) + ε, ε ∼ N (0,0.01x)

1 Uncertainty increases at edges (especially for large x :
σ(x) = 0.01x)

2 Uncertainty decreases as N = 12→ N = 24
3 Accuracy of fit increases as N = 12→ N = 24

x = 0.5, 1, 1.5, . . . , 5.5, 6 (12 points) x = 0.25, 0.5, 0.75, . . . , 5.75, 6 (24 points)
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Data

CDC Data
I United States
I Ages 50–84, Years 1999–2014

F 1360 Data Points (x = (xag , xyr ))
F 84 is maximal age for CDC data
F 50 chosen as cutoff to minimize mixing lower age behavior
F 1999 earliest year available on wonder.cdc.gov
F Could add earlier years, but our analysis suggests they have little

effect
F Most relevant for longevity risk
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Model Assumptions

Observe central mortality rate e−µ(xag ,xyr ) = D(xag,yr )/E(xag,yr )

Fit log-mortality rate y to x = xag , xyr pairs
Can try σ(x) based on Binomial assumption

I Overdispersion issues (µag,yr is unknown)
I Minimal change in final model from simply choosing σ := σ(x)

Use Gaussian covariance kernel
I Implies f is differentiable
I Minimal change in final model from other kernel choices
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Posterior Predicted Mortality Rates

Showing m∗(x) for each ages 60–70
Left panels include historic observations
Right panel suggests mortality improvement
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Mortality Over Time with Credible Bands
Posterior mean and 95% credibility bands for f∗ over calendar year
Can observe increasing uncertainty at edges
Observe mortality improvement then decline
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Mortality Improvement

Typical way is to look at the annual backward improvement

MIobs
back

(
xag ; yr

) .
= 1−

exp
(
µ(xag , yr)

)
exp

(
µ(xag , yr − 1)

)
f∗(xag , yr) is a random variable, so we have the predicted mean
improvement

mGP
back

(
xag , yr

)
= E

[
MIGP

back
(
xag , yr

)] .
= E

[
1−

exp
(
f∗(xag , yr)

)
exp

(
f∗(xag , yr − 1)

)] .
I Available in closed form (lognormal distribution)

Also have MIMP
back

(
xag ; yr

)
(published MP-2015 improvement

factors)
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Comparing Mortality Improvement Methods

Raw improvements extremely noisy (unsurprising)
Smoothed methods both follow data well
GP implies a stronger decline

I Additional data suggests mortality deceleration
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GP Improvement Over Time
GP Improvements from 2000–2014 (in 2 year increments)

Shape changes (flips) over time
Consistent with MP-2015
Generally decelerating after age 55
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Backward Difference & Derivatives

1−

(
exp

(
f∗(xag , yr)

)
exp

(
f∗(xag , yr − h)

))1/h

≈ −
f∗(xag , yr)− f∗(xag , yr − h)

h
(3)

As defined, the annual mortality improvements are backward
differences with h = 1
Right side remains a GP by linearity
Taking limit as h→ 0 yields derivative

I Exists (depending on covariance kernel)

Closed form expressions for distribution of ∂f∗
∂xyr
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GP Derivative

Proposition

For the Gaussian Process f∗ with a twice differentiable covariance kernel C, the
limiting random variables

∂f∗
∂xyr

(xag , yr)
.

= lim
h→0

f∗(xag , yr + h)− f∗(xag , yr)

h
(4)

exist in mean square and form a Gaussian process ∂f∗
∂xyr
∼ GP(mdiff , sdiff ). Given the

training set D = (x , y), the posterior distribution of ∂f∗
∂xyr

(x∗) has mean and variancemdiff (x∗) = E
[

∂f∗
∂xyr

(x∗)
∣∣∣ x, y] = ∂C

∂x′yr
(x, x∗)(C + Σ)−1y,

s2
diff (x∗) = Var

(
∂f∗
∂xyr

(x∗)
∣∣∣ x, y) = ∂2C

∂xyr∂x′yr
(x∗, x∗)− ∂C

∂x′yr
(x, x∗)(C + Σ)−1 ∂C

∂xyr
(x∗, x),

where ∂C
∂x′yr

(x, x∗) =
[

∂C
∂x′yr

(x1, x∗), . . . , ∂C
∂x′yr

(xN , x∗)
]

and each component is computed

as the partial derivative of C (x , x ′) .

See Theorem 2.2.2 in Adler (2010) for more details/proof.
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Comparing Other Methods with GP Derivative
Blue is backwards mortality difference (as before); red is GP
derivative; black is MP-2015
Analysis of other years shows deceleration begins around 2010

I Implies mortality evolution is convex
F Justifies accelerating divergence between yearly difference and

derivative methods
I MP-2014 and MP-2015 begin to diverge around 2010

F Suggests that later years are crucial to mortality forecasts
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Conclusions

GP’s provide a variety of benefits to modeling mortality and
mortality improvement

I Bayesian approach (data driven)
I Posterior distribution for any location

F Including distribution of mortality improvement (both yearly difference
and instantaneous)

F Credible bands (historic and forecasting)

Relatively consistent results with MP-2015
I Four years of additional data pushes GP results in the direction that

MP-2015 took compared to MP-2014
I Differences in results is likely due to data differences than model

issues

GP framework easily handles joint analysis of mortality rates and
mortality improvement
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Future Work

Modeling annual mortality improvement directly with GP
Monotonicity constraint
Multiple populations

I Jointly modeling male & female mortality
I Multivariate GP of multiple countries

Modeling by cause of death
More detailed backtesting

I Analysis on other countries (individually)

THANK YOU!
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