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Problem

What is the problem?

(i) Longevity risk is of growing importance
I Affects pension funds, life insurance companies

(ii) Stochastic mortality models are becoming more popular

I Combining (i) and (ii) creates a difficult problem (pricing,
hedging, etc.)

I Industry utilizes crude extrapolation and approximation
methods
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Mathematical background to the problem

I Assume Markov state process Z (·) that captures evolution of
mortality

I The time T present value of a T−year deferred annuity
paying $1 annually for an individual aged x with remaining
lifetime τ(x) is

a(Z (T ),T , x)
.

=
∞∑
t=1

e−rtE
[
1{τ(x)≥t} | Z (T )

]
(1)

I Equation 1 depends on the mortality model.
I P(τ(x) ≥ t | Z (T )) is not available in closed form under any

commonly used stochastic mortality model
I a(Z (T );T , x) needs to be accurately estimated!
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Ways to evaluate E[a(Z (T ),T , x)]

(i) Nested Monte Carlo: simulate trajectories of Z (T ) and
simulate a(Z (T ),T , x) given each realization.

(ii) Deterministic projection: Use Taylor series expansion or
similar to develop an analytic estimate for
P(τ(x) ≥ t | Z (T )).

(iii) Statistical emulator : Train a model with a design (z1, . . . , zn)
by estimating a(Z (T ),T , x) |Z(T )=z i , i = 1, . . . , n through
Monte Carlo.

I (ii) and (iii) develop intermediate functionals that estimate

f̂ (z) ≈ E[a(Z (T ),T , x) | Z (T ) = z ]

I Final value E[a(Z (T ),T , x)] is determined through Monte
Carlo
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Introduction
Fitting
Smoothing Splines
Kriging

What is statistical emulation?

I Statistical emulation deals with a sampler

Y (z) = f (z) + ε(z), (2)

where f is the unknown response surface and ε is the
sampling noise.

I Examples of f include:
I T−year deferred annuity:

f (z) = E[a(Z (T ),T , x) | Z (T ) = z ].
I Quantile q(α, z) (Value-at-Risk)
I Correlation between two functionals,

Corr(F1(T ,Z (·)),F2(T ,Z (·)))
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Fitting process for statistical emulation

I Goal:
I Represent state process Z (T ) with a design D = {z1, . . . , zN}
I For each z i , produce realizations {y1, . . . , yN} of (2)
I Use pairs (z i , y i )Ni=1 to construct a fitted response surface f̂ .

I Possible frameworks:
I Kernel regressions
I Splines
I Kriging (Gaussian processes)
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How to deterine the design D

I Design D should correctly describe Z (T )
I Can be catered to the problem at hand

I Example: VaR vs expectation

I Should accurately reflect correlation structure

I Can be determined by
I Simulation
I Uniformly spaced grid
I Pseudo-random grid (e.g. Latin hypercube, Sobol sequence)
I Weighted grid
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Smoothing Splines

I Given design D = (z1, . . . , zN) and paired response
(y1, . . . , yN) with z i , y i ∈ R

I Minimize penalized residual sum of squares

n∑
i=1

(
y i − f (z i )

)2
+ λ

∫
(f ′′(u))

2
du (3)

I Constraint: f ′, f ′′ continuous

I λ ≥ 0 is smoothing parameter
I Can be extended to z i , y i ∈ Rd

I Called Thin Plate Spline
I Replace integral in (3) with Rd penalty function
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Mathematical background for kriging

I Consider f as a random field (f (z))z∈Rd

I Given D = (z1, . . . , zN)
I Access to noisy observations y = (y1, . . . , yN)
I y i are draws from the process

Y (z) = f (z) + ε(z), ε(z) ∼ N(0, τ(z))

I Goal: Make predictions using f (z)|Y (D) = y for new z
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Kriging model details

I Kriging assumes

f (z) = µ(z) + X (z)

I µ is a trend function
I X is centered square integrable process

I X has known covariance kernel C
I If X is Gaussian,

f (z)|Y (D) = y ∼ N(mSK (z), s2SK (z))

where mSK (z) and s2SK (z) depend on D, y, µ, τ(D)
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Why we should consider kriging

I Nonparametric regression tool

I Combines trend and flexible residual modeling

I Trend function can be pre-specified (“Simple Kriging”) or
estimated (“Universal Kriging”)

I Widely used in simulation literature

I Easy to implement (R package DiceKriging)

I Bayesian framework provides posterior credible intervals to
understand model accuracy
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Kriging Illustration

D = {−1,−0.5, 0, 0.5, 1} y = {−9,−5,−1, 9, 11} σ(D) = {0.1, 0.5, 2, 4, 8}

Figure: Bayesian credibility bands under the above setup. Fit assuming first
order linear trend. Red dots are training points.
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Hedge Portfolio Analysis under Two-Population Lee-Carter
Annuity Values under CBD Model

Analysis Overview

Case studies:

I 10-year deferred annuity hedge portfolio analysis under a
two-population Lee-Carter model

I 20-year deferred annuity evaluation using the CBD framework
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Hedge Portfolio Analysis under Two-Population Lee-Carter
Annuity Values under CBD Model

10-Year Deferred Annuity Hedge Portfolio Problem

Two population hedge portfolio

I Insured population dynamics should be different from the
general population

I If a tradeble mortality index were available, how effective
could a hedge be?

I Goal: predict hedge portfolio values
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Hedge Portfolio Analysis under Two-Population Lee-Carter
Annuity Values under CBD Model

Case study data and model

Following Cairns et al. [2014]

I Ages 50–89, Years 1961–2005

I “General Population” data is represented by England & Wales
male mortality data

I “Insured Population” data is represented by Continuous
Mortality Investigation (CMI) male mortality data

I CMI produces a life table with data supplied by private UK life
insurance companies and actuarial consultancies

I Case study uses cointegrated two-population Lee Carter model
from Cairns et al. [2011]
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Cointegrated Two-Population Model

Following Cairns et al. [2014]

I Both the general population (index 1) and insured
subpopulation (index 2) follow Lee-Carter with cohort effect

logmi (t, x) = β
(1)
i (x)+β

(2)
i (x)κ

(2)
i (t)+β

(3)
i (x)γ

(3)
i (t−x), i = 1, 2

I κ
(2)
1 is random walk with drift

I Define S(t)
.

= κ
(2)
1 (t)− κ(2)2 (t). Then κ

(2)
2 is determined

through the AR process

S(t) = µ2 + φ(S(t − 1)− µ2) + σ2ε2(t − 1) + cε1(t − 1)

I ε2(·) iid∼ N(0, 1) independent of ε1(·)
I ε1(·) iid∼ N(0, 1) is the noise term in κ

(2)
1 (t)
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Hedge Portfolio Analysis under Two-Population Lee-Carter
Annuity Values under CBD Model

Details for evaluating hedge portfolio values

I Deferral period T = 10 years

I Begin receiving payments at age x = 65
I Models refit at time T to reflect “parameter partial certain”

case [Cairns et al. [2014]]
I State process Z (T ) is four dimensional including period effects

and (significant) refit parameters

Z (T ) = {κ(2)1 (T ), κ
(2)
2 (T ), µ2, φ}
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Hedge Portfolio Analysis under Two-Population Lee-Carter
Annuity Values under CBD Model

Methods compared through the case study

I Estimation methods:
I Analytic Estimate
I Thin Plate Spline
I 1st order linear Universal Kriging
I Simple Kriging

I Uses analytic estimate as drift

I Training set size (Ntr ) effect
I Ntr = 1000
I Ntr = 8000
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Hedge Portfolio Analysis under Two-Population Lee-Carter
Annuity Values under CBD Model

Details behind the analytic estimate (“Industry Standard”)

I Based on Cairns et al. [2014]

I Find E[m(T + t, x) | Z (T )], i = 1, 2 as a function of Z (T )
and t

I The one year survival probability for a person aged x in year t
is

E[exp(−m(t, x))] ≈ exp(−E[m(t, x)])

I We model logm(t, x), so an additional level of approximating
via exponentiation is required
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Hedge Portfolio Analysis under Two-Population Lee-Carter
Annuity Values under CBD Model

Results of two-population hedge case study

Ntr = 1000 Ntr = 8000
Type Bias MSE Bias MSE

Analytic 4.480e-03 2.831e-05 4.480e-03 2.831e-05
Thin Plate Spline 2.577e-03 1.701e-04 5.803e-04 2.596e-05
Universal Kriging 4.363e-04 3.446e-04 1.857e-03 1.662e-04

Simple Kriging -1.334e-03 1.076e-05 9.390e-04 9.262e-06

Table: Monte Carlo averages based on 1000 simulations of Z (T )

I Simple Kriging performs best

I Training set size effect is apparent
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I Training set size effect is apparent
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Comments on two-population hedge case study

I Portfolio values are large in practice
I A portfolio of $1,000,000 would yield an error of $4,480 in

using the analytic estimate

I No way to recognize apriori the performance of the analytic
estimate

I Bias may have been subtracted in differencing process
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Model for CBD annuity valuation model

I Fit CMI data to the CBD model [Cairns et al., 2006]

logit q(t, x) = κ(1)(t) + (x − x̄)κ(2)(t)

I Following Cairns et al. [2009]
I κ(1)(t) and κ(2)(t) are period effects (time series fit using

auto.arima in R)

I Auto-regressive time series yields

Z (T ) = {κ(1)(T ), κ(2)(T − 1), κ(2)(T )}

I Key difference from previous case study: we model survival
probabilities and not mortality rates
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Outline of CBD annuity case study

I Value 20-year deferred annuities beginning payments at age
65.

I Analytic estimator is derived similarly as in the two-population
study

I Surrogate models are
I Thin plate spline
I Ordinary kriging
I 1st-order universal kriging
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Results of CBD annuity case study

Ntr = 1000 Ntr = 8000
Type Bias MSE Bias MSE

Analytic -4.560e-01 2.764e-01 -4.560e-01 2.764e-01
TPS -2.358e-02 4.515e-03 4.195e-03 2.955e-03
OK 3.669e-03 9.575e-03 9.734e-03 5.996e-03

1st-Order UK -1.785e-03 3.415e-03 5.635e-03 1.897e-03

I Longer deferral period reduces effectiveness of analytic
estimate

I Training set size effect is slower to converge
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Concluding Remarks

I Attacked problem of pricing deferred life annuities
I Used real data
I Utilized commonly used mortality models
I Easy to implement method
I Outperformed “industry standard”

I Case studies used drastically different mortality models
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I Extend to more general problem where input (Z (T )) includes
I Age
I Deferral period (in the case of annuity)
I Time 0 parameters
I Interest rate

I Different mortality assumptions
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Questions?

I Paper Available

Statistical Emulators for Pricing and Hedging Longevity Risk
Products
James Risk, Michael Ludkovski
http://arxiv.org/abs/1508.00310
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