Statistical Emulators for Pricing and Hedging Longevity Risk Products

Jimmy Risk

August 6, 2015

Jimmy Risk Statistical Emulators for Pricing and Hedging Longevity Risk P

[Problem](#page-3-0)

What is the problem?

(i) Longevity risk is of growing importance \triangleright Affects pension funds, life insurance companies

(ii) Stochastic mortality models are becoming more popular

\triangleright Combining (i) and (ii) creates a difficult problem (pricing, hedging, etc.)

 \triangleright Industry utilizes crude extrapolation and approximation methods

[Problem](#page-3-0)

What is the problem?

- (i) Longevity risk is of growing importance
	- \triangleright Affects pension funds, life insurance companies

(ii) Stochastic mortality models are becoming more popular

- \triangleright Combining (i) and (ii) creates a difficult problem (pricing, hedging, etc.)
	- \triangleright Industry utilizes crude extrapolation and approximation methods

[Problem](#page-1-0)

What is the problem?

- (i) Longevity risk is of growing importance
	- \triangleright Affects pension funds, life insurance companies
- (ii) Stochastic mortality models are becoming more popular
	- \triangleright Combining (i) and (ii) creates a difficult problem (pricing, hedging, etc.)
		- \triangleright Industry utilizes crude extrapolation and approximation methods

[Problem](#page-1-0)

- Assume Markov state process $Z(\cdot)$ that captures evolution of mortality
- \triangleright The time T present value of a T-year deferred annuity paying \$1 annually for an individual aged x with remaining lifetime $\tau(x)$ is

$$
a(Z(T), T, x) \doteq \sum_{t=1}^{\infty} e^{-rt} \mathbb{E} \left[\mathbb{1}_{\{\tau(x) \geq t\}} | Z(T) \right] \qquad (1)
$$

- \triangleright Equation [1](#page-4-0) depends on the mortality model.
	- \blacktriangleright $\mathbb{P}(\tau(x) \geq t \mid Z(T))$ is not available in closed form under any commonly used stochastic mortality model
	- \triangleright a(Z(T); T, x) needs to be accurately estimated!

[Problem](#page-1-0)

- Assume Markov state process $Z(\cdot)$ that captures evolution of mortality
- \triangleright The time T present value of a T-year deferred annuity paying \$1 annually for an individual aged x with remaining lifetime $\tau(x)$ is

$$
a(Z(T), T, x) \doteq \sum_{t=1}^{\infty} e^{-rt} \mathbb{E} \left[\mathbb{1}_{\{\tau(x) \geq t\}} | Z(T) \right] \qquad (1)
$$

- \blacktriangleright Equation [1](#page-4-0) depends on the mortality model.
	- \blacktriangleright $\mathbb{P}(\tau(x) \geq t \mid Z(T))$ is not available in closed form under any commonly used stochastic mortality model
	- \triangleright a(Z(T); T, x) needs to be accurately estimated!

[Problem](#page-1-0)

- Assume Markov state process $Z(\cdot)$ that captures evolution of mortality
- \triangleright The time T present value of a T-year deferred annuity paying \$1 annually for an individual aged x with remaining lifetime $\tau(x)$ is

$$
a(Z(T), T, x) \doteq \sum_{t=1}^{\infty} e^{-rt} \mathbb{E} \left[\mathbb{1}_{\{\tau(x) \geq t\}} | Z(T) \right] \qquad (1)
$$

- \blacktriangleright Equation [1](#page-4-0) depends on the mortality model.
	- \blacktriangleright $\mathbb{P}(\tau(x) \geq t \mid Z(T))$ is not available in closed form under any commonly used stochastic mortality model
	- \triangleright a(Z(T); T, x) needs to be accurately estimated!

[Problem](#page-1-0)

- Assume Markov state process $Z(\cdot)$ that captures evolution of mortality
- \triangleright The time T present value of a T-year deferred annuity paying \$1 annually for an individual aged x with remaining lifetime $\tau(x)$ is

$$
a(Z(T), T, x) \doteq \sum_{t=1}^{\infty} e^{-rt} \mathbb{E} \left[\mathbb{1}_{\{\tau(x) \geq t\}} | Z(T) \right] \qquad (1)
$$

- \blacktriangleright Equation [1](#page-4-0) depends on the mortality model.
	- \blacktriangleright $\mathbb{P}(\tau(x) \geq t \mid Z(T))$ is not available in closed form under any commonly used stochastic mortality model
	- \blacktriangleright a(Z(T); T, x) needs to be accurately estimated!

[Problem](#page-1-0)

Ways to evaluate $\mathbb{E}[a(Z(T),T,x)]$

- (i) Nested Monte Carlo: simulate trajectories of $Z(T)$ and simulate $a(Z(T), T, x)$ given each realization.
- (ii) Deterministic projection: Use Taylor series expansion or similar to develop an analytic estimate for $\mathbb{P}(\tau(x) > t \mid Z(T)).$
- (iii) Statistical emulator: Train a model with a design (z^1, \ldots, z^n) by estimating $\left. a(Z(\mathcal{T}), \mathcal{T}, x) \right|_{Z(\mathcal{T}) = z^i}, i = 1, \ldots, n$ through Monte Carlo.
	- \triangleright (ii) and (iii) develop intermediate functionals that estimate $\hat{f}(z) \approx \mathbb{E}[a(Z(T), T, x) | Z(T) = z]$
		- Final value $\mathbb{E}[a(Z(T),T,x)]$ is determined through Monte Carlo

[Problem](#page-1-0)

Ways to evaluate $\mathbb{E}[a(Z(T),T,x)]$

- (i) Nested Monte Carlo: simulate trajectories of $Z(T)$ and simulate $a(Z(T), T, x)$ given each realization.
- (ii) Deterministic projection: Use Taylor series expansion or similar to develop an analytic estimate for $\mathbb{P}(\tau(x) > t \mid Z(T)).$
- (iii) Statistical emulator: Train a model with a design (z^1, \ldots, z^n) by estimating $\left. a(Z(\mathcal{T}), \mathcal{T}, x) \right|_{Z(\mathcal{T}) = z^i}, i = 1, \ldots, n$ through Monte Carlo.
	- \triangleright (ii) and (iii) develop intermediate functionals that estimate $\hat{f}(z) \approx \mathbb{E}[a(Z(T), T, x) | Z(T) = z]$
		- Final value $\mathbb{E}[a(Z(T),T,x)]$ is determined through Monte Carlo

[Introduction](#page-11-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

What is statistical emulation?

 \triangleright Statistical emulation deals with a sampler

$$
Y(z) = f(z) + \epsilon(z), \tag{2}
$$

where f is the unknown response surface and ϵ is the sampling noise.

- \blacktriangleright Examples of f include:
	- ► T-year deferred annuity: $f(z) = \mathbb{E}[a(Z(T), T, x) | Z(T) = z].$
	- \triangleright Quantile $q(\alpha, z)$ (Value-at-Risk)
	- \triangleright Correlation between two functionals. $Corr(F_1(T, Z(\cdot)), F_2(T, Z(\cdot)))$

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

What is statistical emulation?

 \triangleright Statistical emulation deals with a sampler

$$
Y(z) = f(z) + \epsilon(z), \tag{2}
$$

where f is the unknown response surface and ϵ is the sampling noise.

- Examples of f include:
	- \blacktriangleright \top \rightarrow \top $f(z) = \mathbb{E}[a(Z(T), T, x) | Z(T) = z].$
	- \triangleright Quantile $q(\alpha, z)$ (Value-at-Risk)
	- \triangleright Correlation between two functionals. $Corr(F_1(T, Z(\cdot)), F_2(T, Z(\cdot)))$

[Introduction](#page-10-0) [Fitting](#page-15-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Fitting process for statistical emulation

 \triangleright Goal:

- ▶ Represent state process $Z(T)$ with a design $\mathcal{D} = \{z^1, \ldots, z^N\}$
- ► For each z^i , produce realizations $\{y^1, \ldots, y^N\}$ of [\(2\)](#page-10-1)
- ► Use pairs $(z^i, y^i)_{i=1}^N$ to construct a fitted response surface \hat{f} .
- \triangleright Possible frameworks:
	- \triangleright Kernel regressions
	- \blacktriangleright Splines
	- \triangleright Kriging (Gaussian processes)

[Introduction](#page-10-0) [Fitting](#page-15-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Fitting process for statistical emulation

 \triangleright Goal:

- ▶ Represent state process $Z(T)$ with a design $\mathcal{D} = \{z^1, \ldots, z^N\}$
- ► For each z^i , produce realizations $\{y^1, \ldots, y^N\}$ of [\(2\)](#page-10-1)
- ► Use pairs $(z^i, y^i)_{i=1}^N$ to construct a fitted response surface \hat{f} .

\blacktriangleright Possible frameworks:

- \triangleright Kernel regressions
- \triangleright Splines
- \triangleright Kriging (Gaussian processes)

[Introduction](#page-10-0) [Fitting](#page-15-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Fitting process for statistical emulation

 \triangleright Goal:

- ▶ Represent state process $Z(T)$ with a design $\mathcal{D} = \{z^1, \ldots, z^N\}$
- ► For each z^i , produce realizations $\{y^1, \ldots, y^N\}$ of [\(2\)](#page-10-1)
- ► Use pairs $(z^i, y^i)_{i=1}^N$ to construct a fitted response surface \hat{f} .
- \blacktriangleright Possible frameworks:
	- \triangleright Kernel regressions
	- \blacktriangleright Splines
	- \triangleright Kriging (Gaussian processes)

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Fitting process for statistical emulation

 \triangleright Goal:

- ▶ Represent state process $Z(T)$ with a design $\mathcal{D} = \{z^1, \ldots, z^N\}$
- ► For each z^i , produce realizations $\{y^1, \ldots, y^N\}$ of [\(2\)](#page-10-1)
- ► Use pairs $(z^i, y^i)_{i=1}^N$ to construct a fitted response surface \hat{f} .
- \blacktriangleright Possible frameworks:
	- \triangleright Kernel regressions
	- \blacktriangleright Splines
	- \triangleright Kriging (Gaussian processes)

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

How to deterine the design D

- \triangleright Design D should correctly describe $Z(T)$
	- \triangleright Can be catered to the problem at hand
		- \blacktriangleright Example: VaR vs expectation
	- \triangleright Should accurately reflect correlation structure
- \triangleright Can be determined by
	- \blacktriangleright Simulation
	- \triangleright Uniformly spaced grid
	- ▶ Pseudo-random grid (e.g. Latin hypercube, Sobol sequence)
	- \triangleright Weighted grid

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

How to deterine the design D

- \triangleright Design D should correctly describe $Z(T)$
	- \triangleright Can be catered to the problem at hand
		- \blacktriangleright Example: VaR vs expectation
	- \triangleright Should accurately reflect correlation structure
- \blacktriangleright Can be determined by
	- \blacktriangleright Simulation
	- \triangleright Uniformly spaced grid
	- ▶ Pseudo-random grid (e.g. Latin hypercube, Sobol sequence)
	- \triangleright Weighted grid

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-19-0) [Kriging](#page-20-0)

Smoothing Splines

- \blacktriangleright Given design $\mathcal{D} = (z^1, \ldots, z^N)$ and paired response (y^1, \ldots, y^N) with $z^i, y^i \in \mathbb{R}$
	- \triangleright Minimize penalized residual sum of squares

$$
\sum_{i=1}^{n} (y^{i} - f(z^{i}))^{2} + \lambda \int (f''(u))^{2} du \qquad (3)
$$

- \blacktriangleright Constraint: f', f'' continuous
- $\blacktriangleright \lambda > 0$ is smoothing parameter
- \blacktriangleright Can be extended to $z^i, y^i \in \mathbb{R}^d$
	- \triangleright Called Thin Plate Spline
	- Replace integral in [\(3\)](#page-18-1) with \mathbb{R}^d penalty function

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Smoothing Splines

- \blacktriangleright Given design $\mathcal{D} = (z^1, \ldots, z^N)$ and paired response (y^1, \ldots, y^N) with $z^i, y^i \in \mathbb{R}$
	- \triangleright Minimize penalized residual sum of squares

$$
\sum_{i=1}^{n} (y^{i} - f(z^{i}))^{2} + \lambda \int (f''(u))^{2} du \qquad (3)
$$

- \blacktriangleright Constraint: f', f'' continuous
- $\blacktriangleright \lambda > 0$ is smoothing parameter
- ► Can be extended to $z^i, y^i \in \mathbb{R}^d$
	- \triangleright Called Thin Plate Spline
	- Replace integral in [\(3\)](#page-18-1) with \mathbb{R}^d penalty function

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-21-0)

Mathematical background for kriging

► Consider f as a random field $(f(z))_{z \in \mathbb{R}^d}$

$$
\blacktriangleright \text{ Given } \mathcal{D} = (z^1, \ldots, z^N)
$$

• Access to noisy observations
$$
\mathbf{y} = (y^1, \dots, y^N)
$$

$$
\blacktriangleright
$$
 yⁱ are draws from the process

$$
Y(z) = f(z) + \epsilon(z), \qquad \epsilon(z) \sim N(0, \tau(z))
$$

Goal: Make predictions using $f(z)|Y(\mathcal{D}) = y$ for new z

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Mathematical background for kriging

► Consider f as a random field $(f(z))_{z\in\mathbb{R}^d}$

$$
\blacktriangleright \text{ Given } \mathcal{D} = (z^1, \ldots, z^N)
$$

Access to noisy observations $\mathbf{y}=(y^1,\ldots,y^N)$

 \blacktriangleright y^{*i*} are draws from the process

$$
Y(z) = f(z) + \epsilon(z), \qquad \epsilon(z) \sim N(0, \tau(z))
$$

Goal: Make predictions using $f(z)|Y(\mathcal{D}) = y$ for new z

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Kriging model details

 \triangleright Kriging assumes

$$
f(z) = \mu(z) + X(z)
$$

- \blacktriangleright μ is a trend function
- \triangleright X is centered square integrable process
	- \triangleright X has known covariance kernel C

If X is Gaussian.

 $f(z)|Y(\mathcal{D}) = \mathbf{y} \sim N(m_{SK}(z), s_{SK}^2(z))$

where $m_{\mathcal{S}\mathcal{K}}(z)$ and $s^2_{\mathcal{S}\mathcal{K}}(z)$ depend on $\mathcal{D}, \mathbf{y}, \mu, \, \tau(\mathcal{D})$

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Kriging model details

 \triangleright Kriging assumes

$$
f(z) = \mu(z) + X(z)
$$

- \blacktriangleright μ is a trend function
- \triangleright X is centered square integrable process
	- \triangleright X has known covariance kernel C
	- If X is Gaussian.

$$
f(z)|Y(\mathcal{D})=\mathbf{y}\sim N(m_{SK}(z),s_{SK}^2(z))
$$

where $m_{\text{SK}}(z)$ and $s_{\text{SK}}^2(z)$ depend on $\mathcal{D}, \mathbf{y}, \mu, \tau(\mathcal{D})$

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Why we should consider kriging

- \blacktriangleright Nonparametric regression tool
- \triangleright Combines trend and flexible residual modeling
- ► Trend function can be pre-specified ("Simple Kriging") or estimated ("Universal Kriging")
- \triangleright Widely used in simulation literature
- \triangleright Easy to implement (R package DiceKriging)
- \triangleright Bayesian framework provides posterior credible intervals to understand model accuracy

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Why we should consider kriging

- \blacktriangleright Nonparametric regression tool
- \triangleright Combines trend and flexible residual modeling
- ► Trend function can be pre-specified ("Simple Kriging") or estimated ("Universal Kriging")
- \triangleright Widely used in simulation literature
- Easy to implement $(R$ package DiceKriging)
- \triangleright Bayesian framework provides posterior credible intervals to understand model accuracy

[Introduction](#page-10-0) [Fitting](#page-12-0) [Smoothing Splines](#page-18-0) [Kriging](#page-20-0)

Kriging Illustration

 $\mathcal{D} = \{-1, -0.5, 0, 0.5, 1\}$ $\mathbf{y} = \{-9, -5, -1, 9, 11\}$ $\sigma(\mathcal{D}) = \{0.1, 0.5, 2, 4, 8\}$

Figure: Bayesian credibility bands under the above setup. Fit assuming first order linear trend. Red dots are training points.

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Case Studies

Jimmy Risk Statistical Emulators for Pricing and Hedging Longevity Risk P

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Analysis Overview

Case studies:

- \triangleright 10-year deferred annuity hedge portfolio analysis under a two-population Lee-Carter model
- \triangleright 20-year deferred annuity evaluation using the CBD framework

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-31-0) [Annuity Values under CBD Model](#page-50-0)

10-Year Deferred Annuity Hedge Portfolio Problem

Two population hedge portfolio

- \blacktriangleright Insured population dynamics should be different from the general population
- \blacktriangleright If a tradeble mortality index were available, how effective could a hedge be?
- \triangleright Goal: predict hedge portfolio values

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-31-0) [Annuity Values under CBD Model](#page-50-0)

10-Year Deferred Annuity Hedge Portfolio Problem

Two population hedge portfolio

- \blacktriangleright Insured population dynamics should be different from the general population
- If a tradeble mortality index were available, how effective could a hedge be?
- \triangleright Goal: predict hedge portfolio values

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

10-Year Deferred Annuity Hedge Portfolio Problem

Two population hedge portfolio

- \blacktriangleright Insured population dynamics should be different from the general population
- If a tradeble mortality index were available, how effective could a hedge be?
- \triangleright Goal: predict hedge portfolio values

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Case study data and model

Following Cairns et al. [2014]

- \blacktriangleright Ages 50–89, Years 1961–2005
- ► "General Population" data is represented by England & Wales male mortality data
- \blacktriangleright "Insured Population" data is represented by Continuous Mortality Investigation (CMI) male mortality data
	- \triangleright CMI produces a life table with data supplied by private UK life insurance companies and actuarial consultancies

 \triangleright Case study uses cointegrated two-population Lee Carter model from Cairns et al. [2011]

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Case study data and model

Following Cairns et al. [2014]

- \blacktriangleright Ages 50–89, Years 1961–2005
- ► "General Population" data is represented by England & Wales male mortality data
- \blacktriangleright "Insured Population" data is represented by Continuous Mortality Investigation (CMI) male mortality data
	- \triangleright CMI produces a life table with data supplied by private UK life insurance companies and actuarial consultancies
- \triangleright Case study uses cointegrated two-population Lee Carter model from Cairns et al. [2011]

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Cointegrated Two-Population Model

Following Cairns et al. [2014]

 \triangleright Both the general population (index 1) and insured subpopulation (index 2) follow Lee-Carter with cohort effect

$$
\log m_i(t, x) = \beta_i^{(1)}(x) + \beta_i^{(2)}(x) \kappa_i^{(2)}(t) + \beta_i^{(3)}(x) \gamma_i^{(3)}(t - x), i = 1, 2
$$

- \blacktriangleright $\kappa_1^{(2)}$ $1^{(2)}$ is random walk with drift
- Define $S(t) \doteq \kappa_1^{(2)}$ $\binom{2}{1}(t) - \kappa_2^{(2)}$ $\binom{2}{2}(t)$. Then $\kappa_2^{(2)}$ $\binom{2}{2}$ is determined through the AR process

 $S(t) = \mu_2 + \phi(S(t-1) - \mu_2) + \sigma_2 \epsilon_2(t-1) + c \epsilon_1(t-1)$

- \blacktriangleright $\epsilon_2(\cdot) \stackrel{iid}{\sim} N(0,1)$ independent of $\epsilon_1(\cdot)$
- ► $\epsilon_1(\cdot) \stackrel{iid}{\sim} N(0,1)$ is the noise term in $\kappa_1^{(2)}$ $1^{(2)}(t)$

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Cointegrated Two-Population Model

Following Cairns et al. [2014]

 \triangleright Both the general population (index 1) and insured subpopulation (index 2) follow Lee-Carter with cohort effect

$$
\log m_i(t, x) = \beta_i^{(1)}(x) + \beta_i^{(2)}(x) \kappa_i^{(2)}(t) + \beta_i^{(3)}(x) \gamma_i^{(3)}(t - x), i = 1, 2
$$

$$
\triangleright
$$
 $\kappa_1^{(2)}$ is random walk with drift

Define $S(t) \doteq \kappa_1^{(2)}$ $\binom{2}{1}(t) - \kappa_2^{(2)}$ $\binom{2}{2}(t)$. Then $\kappa_2^{(2)}$ $2^{(2)}$ is determined through the AR process

$$
S(t) = \mu_2 + \phi(S(t-1) - \mu_2) + \sigma_2 \epsilon_2(t-1) + c \epsilon_1(t-1)
$$

 \blacktriangleright $\epsilon_2(\cdot) \stackrel{iid}{\sim} N(0,1)$ independent of $\epsilon_1(\cdot)$ ► $\epsilon_1(\cdot) \stackrel{iid}{\sim} N(0,1)$ is the noise term in $\kappa_1^{(2)}$ $1^{(2)}(t)$

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Details for evaluating hedge portfolio values

- \blacktriangleright Deferral period $T = 10$ years
- Begin receiving payments at age $x = 65$
- \triangleright Models refit at time T to reflect "parameter partial certain" case [Cairns et al. [2014]]
	- \triangleright State process $Z(T)$ is four dimensional including period effects and (significant) refit parameters

$$
Z(\mathcal{T}) = \{\kappa_1^{(2)}(\mathcal{T}), \kappa_2^{(2)}(\mathcal{T}), \mu_2, \phi\}
$$

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Details for evaluating hedge portfolio values

- \blacktriangleright Deferral period $T = 10$ years
- Begin receiving payments at age $x = 65$
- \triangleright Models refit at time T to reflect "parameter partial certain" case [Cairns et al. [2014]]
	- \triangleright State process $Z(T)$ is four dimensional including period effects and (significant) refit parameters

$$
Z(\mathcal{T}) = \{\kappa_1^{(2)}(\mathcal{T}), \kappa_2^{(2)}(\mathcal{T}), \mu_2, \phi\}
$$

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Methods compared through the case study

- \blacktriangleright Estimation methods:
	- \blacktriangleright Analytic Estimate
	- \blacktriangleright Thin Plate Spline
	- \triangleright 1st order linear Universal Kriging
	- \blacktriangleright Simple Kriging
		- \triangleright Uses analytic estimate as drift
- \blacktriangleright Training set size (N_{tr}) effect
	- $N_{tr} = 1000$
	- $N_{tr} = 8000$

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Methods compared through the case study

- \blacktriangleright Estimation methods:
	- \blacktriangleright Analytic Estimate
	- \blacktriangleright Thin Plate Spline
	- \triangleright 1st order linear Universal Kriging
	- \blacktriangleright Simple Kriging
		- \triangleright Uses analytic estimate as drift
- \blacktriangleright Training set size (N_{tr}) effect
	- $N_{tr} = 1000$
	- $N_{tr} = 8000$

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Methods compared through the case study

- \blacktriangleright Estimation methods:
	- \blacktriangleright Analytic Estimate
	- \blacktriangleright Thin Plate Spline
	- \triangleright 1st order linear Universal Kriging
	- \blacktriangleright Simple Kriging
		- \blacktriangleright Uses analytic estimate as drift
- \blacktriangleright Training set size (N_{tr}) effect
	- $N_{tr} = 1000$
	- $N_{tr} = 8000$

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Details behind the analytic estimate ("Industry Standard")

- ▶ Based on Cairns et al. [2014]
- Find $\mathbb{E}[m(T + t, x) | Z(T)], i = 1, 2$ as a function of $Z(T)$ and t
- \blacktriangleright The one year survival probability for a person aged x in year t is

$$
\mathbb{E}[\exp(-m(t,x))] \approx \exp(-\mathbb{E}[m(t,x)])
$$

 \blacktriangleright We model log $m(t, x)$, so an additional level of approximating via exponentiation is required

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Details behind the analytic estimate ("Industry Standard")

- ▶ Based on Cairns et al. [2014]
- Find $\mathbb{E}[m(T + t, x) | Z(T)], i = 1, 2$ as a function of $Z(T)$ and t
- \blacktriangleright The one year survival probability for a person aged x in year t is

$$
\mathbb{E}[\exp(-m(t,x))] \approx \exp(-\mathbb{E}[m(t,x)])
$$

 \triangleright We model log $m(t, x)$, so an additional level of approximating via exponentiation is required

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Results of two-population hedge case study

Table: Monte Carlo averages based on 1000 simulations of $Z(T)$

- \triangleright Simple Kriging performs best
- \blacktriangleright Training set size effect is apparent

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Results of two-population hedge case study

Table: Monte Carlo averages based on 1000 simulations of $Z(T)$

\triangleright Simple Kriging performs best

 \blacktriangleright Training set size effect is apparent

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Results of two-population hedge case study

Table: Monte Carlo averages based on 1000 simulations of $Z(T)$

- \blacktriangleright Simple Kriging performs best
- \blacktriangleright Training set size effect is apparent

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

- \triangleright Portfolio values are large in practice
	- \triangleright A portfolio of \$1,000,000 would yield an error of \$4,480 in using the analytic estimate
- \triangleright No way to recognize apriori the performance of the analytic estimate
	- \triangleright Bias may have been subtracted in differencing process

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

- \triangleright Portfolio values are large in practice
	- \triangleright A portfolio of \$1,000,000 would yield an error of \$4,480 in using the analytic estimate
- \triangleright No way to recognize apriori the performance of the analytic estimate
	- \triangleright Bias may have been subtracted in differencing process

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

- \triangleright Portfolio values are large in practice
	- \triangleright A portfolio of \$1,000,000 would yield an error of \$4,480 in using the analytic estimate
- \triangleright No way to recognize apriori the performance of the analytic estimate
	- \triangleright Bias may have been subtracted in differencing process

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

- \triangleright Portfolio values are large in practice
	- \triangleright A portfolio of \$1,000,000 would yield an error of \$4,480 in using the analytic estimate
- \triangleright No way to recognize apriori the performance of the analytic estimate
	- \triangleright Bias may have been subtracted in differencing process

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-51-0)

Model for CBD annuity valuation model

 \triangleright Fit CMI data to the CBD model [Cairns et al., 2006]

$$
logit q(t,x) = \kappa^{(1)}(t) + (x - \bar{x})\kappa^{(2)}(t)
$$

- ► Following Cairns et al. [2009]
	- \blacktriangleright $\kappa^{(1)}(t)$ and $\kappa^{(2)}(t)$ are period effects (time series fit using auto.arima in R)
- \blacktriangleright Auto-regressive time series yields

$$
Z(\mathcal{T}) = \{ \kappa^{(1)}(\mathcal{T}), \kappa^{(2)}(\mathcal{T} - 1), \kappa^{(2)}(\mathcal{T}) \}
$$

 \triangleright Key difference from previous case study: we model survival probabilities and not mortality rates

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Model for CBD annuity valuation model

 \triangleright Fit CMI data to the CBD model [Cairns et al., 2006]

$$
logit q(t,x) = \kappa^{(1)}(t) + (x - \bar{x})\kappa^{(2)}(t)
$$

- ► Following Cairns et al. [2009]
	- \blacktriangleright $\kappa^{(1)}(t)$ and $\kappa^{(2)}(t)$ are period effects (time series fit using auto.arima in R)
- \blacktriangleright Auto-regressive time series yields

$$
Z(\mathcal{T}) = \{ \kappa^{(1)}(\mathcal{T}), \kappa^{(2)}(\mathcal{T} - 1), \kappa^{(2)}(\mathcal{T}) \}
$$

 \triangleright Key difference from previous case study: we model survival probabilities and not mortality rates

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Outline of CBD annuity case study

- \triangleright Value 20-year deferred annuities beginning payments at age 65.
- \triangleright Analytic estimator is derived similarly as in the two-population study
- \blacktriangleright Surrogate models are
	- \blacktriangleright Thin plate spline
	- \triangleright Ordinary kriging
	- \triangleright 1st-order universal kriging

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Outline of CBD annuity case study

- \triangleright Value 20-year deferred annuities beginning payments at age 65.
- \triangleright Analytic estimator is derived similarly as in the two-population study
- \blacktriangleright Surrogate models are
	- \blacktriangleright Thin plate spline
	- \triangleright Ordinary kriging
	- \triangleright 1st-order universal kriging

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Outline of CBD annuity case study

- \triangleright Value 20-year deferred annuities beginning payments at age 65.
- \triangleright Analytic estimator is derived similarly as in the two-population study
- \blacktriangleright Surrogate models are
	- \blacktriangleright Thin plate spline
	- \triangleright Ordinary kriging
	- \blacktriangleright 1st-order universal kriging

[Hedge Portfolio Analysis under Two-Population Lee-Carter](#page-29-0) [Annuity Values under CBD Model](#page-50-0)

Results of CBD annuity case study

- \blacktriangleright Longer deferral period reduces effectiveness of analytic estimate
- \blacktriangleright Training set size effect is slower to converge

[Concluding Remarks](#page-57-0) [Further Work](#page-62-0)

Concluding Remarks

Concluding Remarks

Jimmy Risk Statistical Emulators for Pricing and Hedging Longevity Risk P

[Concluding Remarks](#page-61-0) [Further Work](#page-62-0)

Concluding Remarks

- \triangleright Used real data
- \triangleright Utilized commonly used mortality models
- \blacktriangleright Easy to implement method
- \triangleright Outperformed "industry standard"
	- \triangleright Case studies used drastically different mortality models

[Concluding Remarks](#page-61-0) [Further Work](#page-62-0)

Concluding Remarks

- \blacktriangleright Used real data
- \triangleright Utilized commonly used mortality models
- \blacktriangleright Easy to implement method
- \triangleright Outperformed "industry standard"
	- \triangleright Case studies used drastically different mortality models

[Concluding Remarks](#page-61-0) [Further Work](#page-62-0)

Concluding Remarks

- \triangleright Used real data
- \triangleright Utilized commonly used mortality models
- \blacktriangleright Easy to implement method
- \triangleright Outperformed "industry standard"
	- \triangleright Case studies used drastically different mortality models

[Concluding Remarks](#page-61-0) [Further Work](#page-62-0)

Concluding Remarks

- \triangleright Used real data
- \triangleright Utilized commonly used mortality models
- \blacktriangleright Easy to implement method
- \triangleright Outperformed "industry standard"
	- \triangleright Case studies used drastically different mortality models

[Concluding Remarks](#page-57-0) [Further Work](#page-62-0)

Concluding Remarks

- \triangleright Used real data
- \triangleright Utilized commonly used mortality models
- \blacktriangleright Easy to implement method
- \triangleright Outperformed "industry standard"
	- \triangleright Case studies used drastically different mortality models

[Concluding Remarks](#page-57-0) [Further Work](#page-63-0)

Further Work

Extend to more general problem where input $(Z(T))$ includes

- \blacktriangleright Age
- \triangleright Deferral period (in the case of annuity)
- \blacktriangleright Time 0 parameters
- \blacktriangleright Interest rate

 \triangleright Different mortality assumptions

[Concluding Remarks](#page-57-0) [Further Work](#page-62-0)

Further Work

Extend to more general problem where input $(Z(T))$ includes

- \blacktriangleright Age
- \triangleright Deferral period (in the case of annuity)
- \blacktriangleright Time 0 parameters
- \blacktriangleright Interest rate
- \blacktriangleright Different mortality assumptions

Bibliography

- Andrew JG Cairns, David Blake, and Kevin Dowd. A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration. Journal of Risk and Insurance, 73(4):687–718, 2006.
- Andrew JG Cairns, David Blake, Kevin Dowd, Guy D Coughlan, David Epstein, Alen Ong, and Igor Balevich. A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal, 13(1):1–35, 2009.
- Andrew JG Cairns, David Blake, Kevin Dowd, Guy D Coughlan, and Marwa Khalaf-Allah. Bayesian stochastic mortality modelling for two populations. ASTIN Bulletin, 41(01):29–59, 2011.
- Andrew JG Cairns, Kevin Dowd, David Blake, and Guy D Coughlan. Longevity hedge effectiveness: A decomposition. Quantitative Finance, 14(2):217–235, 2014.

 \blacktriangleright Paper Available

Statistical Emulators for Pricing and Hedging Longevity Risk Products James Risk, Michael Ludkovski http://arxiv.org/abs/1508.00310