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Preface

Most the content except for the appendix comes from [1], a book by Adam Bobrowski
entitled Functional Analysis for Probability and Stochastic Processes. This book definitely
helps tie a gap for probabilists to better understand functional analysis, and for analysts to
better understand probability theory. The reader may assume that, unless cited otherwise,
the content being read comes from this book, though there were some personal comments
added, and some proofs were omitted from the book so I wrote them myself. The order is
as follows. We first go over some measure theoretic preliminary results, and then define an
operator based on a measure. Convergence of measure (in some sense) is then equivalent to
convergence of these operators in the correct topology, and for a specific case we show that
a sequence of operators converges, proving the central limit theorem.

Remark 0.1. This is an extremely untraditional way of proving the Central Limit Theorem;
in fact, I was unable to find any other source that proved it using this method, while every
other method I found uses the Fourier transform. I chose this approach because it uses what
we have covered all year and gives further results about these topics (including measure
theory, Banach spaces, weak* topology, C(X) spaces, and operators).

Remark 0.2. Traditionally in probability theory the symbol Ω is a set, F is a σ−algebra,
and P is a probability measure, so (Ω,F ,P) is a probability space. Furthermore, the letter
X is typically used to denote a random variable (a measurable function) on the probability
space. To avoid notational confusion, I will stick with (X,Ω, µ) as a measure (or probability
if µ(X) = 1) space, and measurable functions will be denoted f, g, etc..

1 Measure Theory Preliminaries

Suppose that (X,Ω, µ) is a measure space and f is a measurable map from (X,Ω) to another
measurable space (X ′,Ω′). Consider the set function µf on Ω′ defined by

µf (A) = µ(f−1(A)) = µ({x : f(x) ∈ A}).
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It is easy to show that µf is a measure on (X ′,Ω′). The measure µf is called the transport
of the measure µ via f , or a measure induced on (X ′,Ω′) by µ and f. In particular, if µ
is a probability measure (i.e. µ(X) = 1) and (X ′,Ω′) = (Rn,Mn(Rn)), where Mn(Rn) are
the Lebesgue measurable sets on Rn, then µf is called the distribution or law of f.

Proposition 1.1. A measurable function φ defined on X ′ is integrable with respect to µf
iff φ ◦ f is integrable with respect to µ, and∫

X′
φdµf =

∫
X

φ ◦ fdµ. (1)

Proof. First suppose φ =
∑
ai1Ai for Ai ∈ Ω′ is a positive integrable simple function.

Compute ∫
X′
φ(x)dµf (x) =

∫
X′

∑
ai1Ai(x)dµf (x) =

∑
aiµf (Ai)

=
∑

aiµ(y : f(y) ∈ Ai) =

∫
X

∑
ai1Ai(f(y))dµ(y)

=

∫
X

(φ ◦ f)(y)dµ(y).

Therefore the proposition holds in the simple function case. We can extend the result to
positive functions by the monotone convergence theorem, and finally all functions by linearity
and triangle inequality.

Equation 1 is called the change of variables formula. A particular case is that where
a measure, say ν, is already defined on (X ′,F ′), and µf is absolutely continuous with respect

to ν. If the Radon-Nikodym derivative is ψ =
dµf
dν
, then the change of variables formula reads∫

X

φ ◦ fdµ =

∫
X′
φdµf =

∫
X′
φψdν.

Example 1.2. Suppose we have a probability space (X,Ω, µ) and a measure space (R,B(R),m),
where m is the Lebesgue measure. Let f : X → R be a function defined through its distri-
bution which satisfies

dµf
dm

(x) = 1√
2π
e−x

2/2. Then for A ∈ B(R), we have

µ(f ∈ A) =

∫
1A(f(y))dµ(y) =

∫
1A(x)

1√
2π
e−x

2/2dx.

The function f is said to be a standard normal random variable and its distribution is
defined by µf (dx) = 1√

2π
e−x

2/2dx.

2 Measures as operators

Notation. • BM(R) is the space of bounded Borel measurable functions on R;

• Cb(R) ⊂ C(R) is the subspace consisting of bounded continuous functions;

2



• UCb(R) is the space of bounded uniformly continuous Borel measurable functions on
R;

• C0(R) is the space of continuous functions that vanish at infinity.

• Mb(X) is the space of bounded scalar-value Borel measures on a topological space X.
All of the function spaces above are equipped with the sup norm.

Definition 2.1. Given a finite measure µ on (R,B(R)) we may define an operator Tµ acting
in BM(R) by the formula

(Tµf)(x) =

∫
R
f(x+ y)dµ(y). (2)

Proposition 2.2. Tµ is well defined.

Proof. Let (R,B(R)) be our measurable space with a finite measure µ and Tµ defined above.
First we check that Tµ maps BM(R) into itself. If f = 1(a,b] for some real numbers a < b,
then

Tµf(x) = µ(−∞, b− x]− µ(−∞, a− x]

is of bounded variation (see appendix) and hence measurable by Corollary A.5. Let G be
the class of measurable sets such that for A ∈ G, Tµ1A is measurable. We show that G is a
λ−system (see Appendix B). First, Tµ1R(x) = 0, so R ∈ G. Next, let A,B ∈ G and A ⊃ B.
Then

Tµ1A\B(x) =

∫
1A\B(x+ y)dµ(y) =

∫
1A(x+ y)dµ(y)−

∫
1B(x+ y)dµ(y)

= Tµ1A(x)− Tµ1B(x),

so it is a difference of measurable functions and hence measurable. Lastly let (An) ∈ G be a
sequence of increasing sets such that

⋃
nAn = A. Then

Tµ1A(x) =

∫
1
⋃
n An

(x+ y)dµ(y) = lim
m→∞

∫
1
⋃m
n An(x+ y)dµ(y)

by monotone convergence theorem. Since the limit of measurable functions on R is measur-
able (Weaver Exercise 2.7), Tµ1A(x) is measurable. We have already shown that intervals
are contained in G, and intervals generate B(R), so by the monotone class theorem (Theorem
B.4), G = B(R). Hence Tµf is measurable for any f = 1A, where A ∈ B(R). By linearity of
integral this is also true for simple functions. Since pointwise limits of measurable functions
are measurable, this extends to all f ∈ BM(R). As for its boundedness, we have

‖Tµf‖ ≤ sup
x∈R
|(Tµf)(x)| ≤ sup

x∈R
sup
y∈R
|f(x+ y)|µ(R) = ‖f‖µ(R),

with equality for f = 1R. Thus ‖Tµ‖ = µ(R) and in particular ‖Tµ‖ = 1 for a probability
measure µ.
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Remark 2.3. Tµ is invariant for the subspaces Cb(R) and UCb(R). The Cb(R) case follows
by Lebesgue Dominated Convergence Theorem and the UCb(R) case follows from

|(Tµf)(x)− (Tµf)(y)| ≤ sup
z∈R
|f(x+ z)− f(y + z)|µ(R), x, y ∈ R.

It can similarly be shown that Tµ maps C0(R) into itself.

Proposition 2.4. If Tµ ∈ B(B(R)), then it uniquely determines µ.

Proof. Note that if Tµ = Tν , then

(Tµf)(0) =

∫
fdµ,

(Tνf)(0) =

∫
fdν.

The result follows from Lemma A.1.

Corollary 2.5. The map µ 7→ Tµ is a linear invertible map from Mb(R) into B(BM(R))
(bounded linear operators on BM(R))

3 Relating to Probability

3.1 Independence

Definition 3.1. Given a measure space (X,Ω, µ), a topological space (X ′,Ω′), and a function
f : X → X ′, we say the σ−algebra generated by f , written σ(f), is the smallest algebra
containing the sets f−1(A) for all A ∈ Ω′.

Definition 3.2. Let space (X,Ω, µ) be a probability space. Let Fj, j ∈ J be a family of
classes of measurable subsets (J is an abstract index set). The classes are termed mutually
independent if for all n ∈ N, all j1, . . . , jn ∈ J, and all Ai ∈ Fji , i = 1, . . . , n the following
holds:

µ

(
n⋂
i=1

Ai

)
=

n∏
i=1

µ(Ai).

The classes are termed pairwisely independent if for all n ∈ N, all t1, t2 ∈ J, and all
Ai ∈ Fji , i = 1, 2,

µ(A1 ∩ A2) = µ(A1)µ(A2).

Functions fj, j ∈ J are said to be mutually (pairwisely) independent if the σ−algebras
Fj = σ(fj) generated by fj are mutually (pairwisely) independent.

From now on, the phrase “classes (functions) are independent” should be understood as
“classes (functions) are mutually independent”.
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3.2 Convolution

Definition 3.3. For any two finite Borel measures µ, ν, we may define the convolution µ ∗ ν
as

(µ ∗ ν)(E) =

∫ ∫
1E(y + z)dµ(y)dν(z)

for all Borel measurable E.

Proposition 3.4. Two functions f and g defined on a probability space into a Borel measure
space are independent iff the distribution of (f, g) is µf ⊗ µg.

Proof. (⇐) Let A ∈ σ(f), B ∈ σ(g). Then A = {x : f(x) ∈ Ã} and B = {x : g(x) ∈ B̃}. If
µ(f,g) = µf ⊗ µg, then

µ(A ∩B) = µ(f,g)(Ã× B̃) = µf (Ã)µg(B̃) = µ(A)µ(B).

(⇒) If D = A×B is an open set, then

µ(f,g)(D) = µ(f,g)(A×B) = µ({x : f(x) ∈ A} ∩ {y : g(y) ∈ B}) = µf (A)µg(B).

Since the open sets generate the Borel σ−algebra, it holds for all Borel sets.

Corollary 3.5. If f and g are two independent functions on a probability space (X,Ω, µ),
then the distribution of their sum is the convolution of their distributions:

µf+g = µf ∗ µg.

Proof. This is a simple computation using Proposition 3.4:

µf+g(A) = µ ({x : f(x) + g(x) ∈ A}) =

∫
1{f(x)+g(x)∈A}dµ(x)

=

∫ ∫
1{s+t∈A}d (µf ⊗ µg) (s, t) =

∫ ∫
1{s+t∈A}dµf (s)dµg(t)

= (µf ∗ µg)(A).

4 Convergence of Measure

On a measure space (X,Ω, µ), if f : X → X ′ for a target space (X ′,Ω′), then we may assign
it to the operator Tf defined by Tf := Tµf where µf is the transport measure of f.

Recall the general Riesz-Markov theorem from Weaver.

Theorem 4.1. Let X be a second countable locally compact Hausdorff space. Then every
bounded linear functional on C0(X) is given by integrating against a scalar-valued Borel
measure on X, and this pairing implements an isometric isomorphism between C0(X)′ and
M(X).
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From this, we can consider weak* convergence of Borel measures on X. Actually, if X
is only locally compact, it is often more convenient to consider X∗,the one-point compact-
ification of X, and to use C(X∗) as the set of test functions for weak* convergence. The
reason is that it may happen that some mass of the measure may escape to infinity, as in
the following example.

Example 4.2. Let X = R+ and µn = 1
2
δ0 + 1

2
δn, where δk is the Dirac measure equaling

1 if k ∈ A and 0 otherwise. In this case, for any f ∈ C0(R+),
∫
fdµn converges to 1

2
f(0),

so that µn as functionals on C0(R+) converge in the weak* topology to an (improper1) dis-
tribution 1

2
δ0. In this approach it is unclear what happened with the missing mass. Taking

an f ∈ C((R+)∗) = C([0,∞]) clarifies the situation, because for f ∈ C([0,∞]) we see that∫
fdµn converges to 1

2
f(0) + 1

2
f(∞), and so µn converges to 1

2
δ0 + 1

2
δ∞.

The following lemma serves very well as a useful tool in proving weak* convergence of
measures. It is the main tool in proving the Central Limit Theorem. It involves use of the
Arzela-Ascoli Theorem – see Appendix C. First we define the strong operator topology.

Definition 4.3. If X and Y are Banach spaces, the strong operator topology is the
topology defined on B(X, Y ) generated by the family of seminorms {px : x ∈ X}, where
px(T ) = ‖Tx‖Y for T ∈ B(X, Y ). Hence if ‖Tnx − Tx‖Y → 0 as n → ∞ for all x ∈ X, we
say Tn converges strongly to T.

Lemma 4.4. A sequence µn of probability measures on [−∞,∞] converges to a probability
measure µ in the weak* topology iff the corresponding operators Tµn in C([−∞,∞]) converge
strongly to Tµ.

Proof. Suppose Tµn → T strongly, that is, by Definition 2.1, ‖Tµnf − Tµf‖ → 0 for all
f ∈ C([−∞,∞]). That is,

sup
x

∣∣∣∣∫ f(x+ y)dµn(y)−
∫
f(x+ y)dµ(y)

∣∣∣∣→ 0.

However, the supremum is over all x, so the case where x = 0 yields |
∫
f(y)dµn(y) −∫

f(y)dµ(y)| → 0. But in this case, the left hand side is actually equal to |µn(f) − µ(f)|.
This holds for all f ∈ C([−∞,∞]), so µn → µ in the weak* topology.

Now suppose µn → µ in the weak* topology. By assumption, for any f ∈ C([−∞,∞])
and any x ∈ (−∞,∞) there exists the limit of gn(x) =

∫
f(x+ y)dµn(y), as n→∞, and it

equals g(x) =
∫
f(x + y)dµ(y). Moreover, We will prove that gn converges to g uniformly,

i.e. strongly in C[−∞,∞].
We claim that the family (gn) is bounded by ‖f‖ and is equicontinuous on [−∞,∞],

so that the assumptions of the Arzela-Ascoli Theorem (Theorem C.2) are satisfied. In this
case, the family (gn) will be uniformly bounded, and the result follows: toward contradiction
suppose gn 9 g strongly, and choose a subsequence that stays at some distance ε > 0 from g.

1An improper distribution is a distribution that is not a probability distribution.
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By the Arzela-Ascoli Theorem, there exists a subsequence of our subsequence that converges
uniformly to some g̃ ∈ C([−∞,∞]). By uniqueness of limit of gn, this subsequence must also
converge (pointwise) to g, implying that g̃ = g, a contradiction.

It remains to prove the claim, that is, that (gn) is bounded by ‖f‖ and is equicontinuous
on [−∞,∞]. Since f ∈ C([−∞,∞]), for a given ε > 0 there exists δ > 0 such that for
y, y′ ∈ R, |f(y)− f(y′)| < ε provided |y − y′| < δ. Hence, for any x ∈ R and |h| ≤ δ, we also
have that

|gn(x+ h)− gn(x)| ≤
∫
|f(x+ h+ y)− f(x+ y)|dµn(y) < ε,

since µn is a probability measure. Since this holds for all n, this proves that gn is equicon-
tinuous at x ∈ R. To prove it is equicontinuous at ∞, we first take t > 0 and define
fk ∈ C([−∞,∞]), k ≥ 1 as fk(x) = 1

1+kmax{t−x,0} . Then, limk→∞ fk(x) = 1[t,∞)(x), x ∈ R.
Hence

lim sup
n→∞

µn[t,∞) ≤ lim
n→∞

∫
xkdµn =

∫
xkdµn →

k→∞
µ[t,∞).

This implies that given an ε > 0 we may choose a t > 0 so that µn[t,∞) < ε, for sufficiently
large n. Since such a t may be chosen for each n ≥ 1 individually, as well, and x belongs to
C([−∞,∞]), we may choose a t so that µn[t,∞) < ε for all n ≥ 1 and |f(x) − f(∞)| < ε,
for x > t. Now, for x > 2t,

|gn(∞)− gn(x)| ≤
∫
y≤t

+

∫
y>t

|f(∞)− f(x+ y)|dµn(y) ≤ ε+ 2‖f‖ε

proving that yn are equicontinuous at ∞. The case of −∞ is treated in the same way.

5 Central Limit Theorem

5.1 Sum of Normal Random Variables

Recall that f has a standard normal distribution if
dµf
dm

(x) = 1√
2π
e−x

2/2. It turns out that
if g has a standard normal distribution and is independent of f, then f + g has a normal
distribution (no longer standard, meaning that

dµf+g
dm

(x) will differ by constants in some
fashion).

Example 5.1. We compute µf+g. By Corollary 3.5, µf+g = µf ∗ µg.

µf+g(A) = (µf ∗ µg)(A) =

∫ ∫
1A(y + z)dµf (y)dµg(z)

=

∫ ∫
1A(y + z)

1

2π
e−y

2/2e−z
2/2dydz

=

∫ ∫
1A(u)

1

2π
e−(u−v)

2/2e−v
2/2dvdu (*)

by the change of variable y + z = u, z = v. Expand the exponent and complete the square:

−(u− v)2

2
− v2

2
= −v2 − u2

2
+ uv = −

(
v − u

2

)2
− u2

4
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In general, change of variable implies that the following equality holds∫
1√
2π
e−(x−µ)

2

dx =

∫
1√

2
√

2π
e−y

2/2dy =
1√
2
.

Hence (*) becomes∫ ∫
1A(u)

1

2π
e−(v−u2 )

2
−u

2

4 dvdu =

∫
1A(u)

1√
2
√

2π
e−u

2/4du.

Hence
dµf+g
dm

(x) = 1√
2
√
2π
e−x

2/4. In fact, we say a function h who has the density

dµh
dm

(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2)

is a normal random variable with mean µ and variance σ2. We have therefore shown that f+g
is a normal random variable with mean 0 and variance 2. One can show by induction that
if f1, . . . , fn is a sequence of independent standard normal random variables, then f1 + f2 +
· · ·+ fn has the normal distribution with mean 0 and variance n. In an even easier fashion,
one may show af1 has the normal distribution with mean 0 and variance a2. Consequently,

f1√
n

+ · · ·+ fn√
n

has the standard normal distribution.

5.2 Operator Composition

Proposition 5.2. (TµTνφ)(x) = Tµ∗ν(φ). The map µ 7→ Tµ is a homomorphism of two
Banach algebras. µ 7→ Tµ changes convolution into operator composition.

Proof.

(TµTνφ)(x) =

∫
(Tνφ)(x+ y)µ(dy) =

∫ ∫
φ(x+ y + z)ν(dz)µ(dy)

=

∫
φ(x+ t)(µ ∗ ν)(dt) = Tµ∗ν(x)

Since for each function we have the measure µf , we can assign f to the operator Tf = Tµf .
By Corollary 3.5 µf+g = µf ∗ µg, so Proposition 5.2 implies Tf+g = TfTg.

Corollary 5.3. If f and f1, . . . , fn are independent standard normal random variables, then

Tf = T 1√
n

∑n
i=1 fi

=
(
T 1√

n
f1

)◦n
, where (·)◦n means the n−fold composition.

Proof. The first equality comes from Example 5.1 and Proposition 2.4, and the second comes
from Proposition 5.2.
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The following lemma gives us a bound for the norm of the composition of operators.

Lemma 5.4. Let Si, Ti be linear operators in a Banach space and letM = maxi=1,...,n{‖Si‖, ‖Ti‖}.
Then

‖SnSn−1 · · ·S1 − TnTn−1 · · ·T1‖ ≤Mn−1
n∑
i=1

‖Ti − Si‖.

In particular, for any S and T and M = max{‖S‖, ‖T‖},

‖Sn − T n‖ ≤Mn−1n‖S − T‖.

Proof. We show this by induction. It clearly holds for n = 1. Assume it holds for n = k,
that is,

‖SkSk−1 · · ·S1 − TkTk−1 · · ·T1‖ ≤Mk−1
k∑
i=1

‖Ti − Si‖.

Define Ak = SkSk−1 · · ·S1 and Bk = TkTk−1 · · ·T1. Then

‖Ak+1 −Bk+1‖ = ‖Sk+1Ak − Tk+1Bk‖ = ‖(Sk+1Ak − Tk+1Ak) + (Tk+1Ak − Tk+1Bk)‖
≤ ‖Sk+1Ak − Tk+1Ak‖+ ‖Tk+1Ak − Tk+1Bk‖
≤ ‖Ak‖‖Sk+1 − Tk+1‖+ ‖Tk+1‖‖Ak −Bk‖

≤ ‖Ak‖‖Sk+1 − Tk+1‖+ ‖Tk+1‖Mk−1
k∑
i=1

‖Ti − Si‖

≤Mk‖Sk+1 − Tk+1‖+MMk−1
k∑
i=1

‖Ti − Si‖

= Mk

k+1∑
i=1

‖Ti − Si‖.

We could have used two different M ′s, one being the max up to k and the other up to k+ 1,
but the proof is clear. Note that we used the operator composition inequality ‖S ◦ T‖ ≤
‖S‖‖T‖.

5.3 Proof of Central Limit Theorem

Lemma 5.5. Let (X,Ω, µ) be a probability space and f ∈ L2(X). Let
∫
fdµ = 0 and∫

f 2dµ = 1. Also, let an be a sequence of positive numbers such that limn→∞ an = 0. Then,
for any φ ∈ C2[−∞,∞], the space of continuous twice differentiable functions on [−∞,∞]
with continuous derivatives, the limit of 1

a2n
(Tanfφ− φ) exists and does not depend on f. In

fact, it equals 1
2
φ′′.

Proof. By the Taylor formula, for a twice differentiable φ and real numbers x and y,

φ(x+ y) = φ(x) + yφ′(x) +
y2

2
φ′′(x+ θy),
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for some 0 ≤ θ ≤ 1 depending on x, y and φ. Thus,

1

a2n
[Tanfφ(x)− φ(x)] =

1

a2n

[∫
φ(x+ y)dµanf (y)− φ(x)

]
=

1

a2n

[∫
φ(x+ anf(y))dµ(y)− φ(x)

]
=

1

a2n

∫
[φ(x+ anf(y))− φ(x)] dµ(y)

=
1

a2n

∫ [
anf(y)φ′(x) +

a2nf
2(y)

2
φ′′(x+ θanf(y))

]
dµ(y)

=

∫
f 2(y)

2
φ′′(x+ θanf(y))dµ(y)

Fix ε > 0. By the above equality, we would like to show∣∣∣∣ 1

a2n
[Tanfφ(x)− φ(x)]− 1

2
φ′′(x)

∣∣∣∣ =

∣∣∣∣∫ f 2(y)

2
φ′′(x+ θanf(y))dµ(y)− 1

2
φ′′(x)

∣∣∣∣→ 0.(∗)

Since φ′′ ∈ C[−∞,∞], for fixed ε > 0 we can choose δ such that |y| < δ implies |φ′′(x +
y) − φ′′(y)| < ε. Break the integral into the set where |f | ≥ δ

an
and where |f | < δ

an
. Note

that ‖f‖22 = 1 implies 1
2
φ′′(x) =

∫ f2(y)
2
φ′′(x)dµ. Hence∣∣∣∣∣

∫
|f |< δ

an

f 2(y)

2
φ′′(x+ θanf(y))dµ(y)− 1

2
φ′′(x)

∣∣∣∣∣ ≤
∫
|f |< δ

an

f 2(y)

2

∣∣∣∣φ′′(x+ θanf(y))− 1

2
φ′′(x)

∣∣∣∣︸ ︷︷ ︸
<ε

dµ(y)

< ε

∫
f 2(y)

2
dµ(y)

≤ ε

2
,

where we subtly used 0 ≤ θ ≤ 1 so that |θanf(y)| ≤ |f(y)| < δ on the set |f | < δ
an
.

For the opposite, simply note∫
|f |≥ δ

an

f 2(y)

2
φ′′(x+ θanf(y))dµ(y) ≤ ‖φ′′‖

∫
|f |≥ δ

an

f 2(y)

2
dµ(y)→ 0

by the monotone convergence theorem since µ(f =∞) = 0 from ‖f‖22 = 1.
Putting it all together, we have shown the left hand side of (*) is less than a sequence

converging to 0 plus ε/2, with no x appearing. Hence taking the supremum over all x and
n→ 0 shows the result.

Theorem 5.6. Central Limit Theorem. If fn, n ∈ N is a sequence of independent random
variables with the same distribution with m :=

∫
fndµ and σ2 :=

∫
f 2
ndµ − m2, then the

distribution of
1√
nσ2

n∑
k=1

(fk −m)

converges weak* to the standard normal distribution.
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Proof. By Lemma 4.4, it is enough to show convergence of the corresponding operators in
the strong topology. Without loss of generality, assume m = 0 and σ2 = 1 (otherwise we
consider the function f−m

σ
which will satisfy these properties). Let Tn = T 1√

nf
where f is any

of the fi (the choice is irrelevant since they have the same distribution). By the independence
assumption, Proposition 5.2 implies T 1√

n

∑n
k=1 fk

= (Tn)◦n, so we need to show that (Tn)◦n

converges strongly to Tg, where g has the standard normal distribution. Note that the set
C2[−∞,∞] is dense in C[−∞,∞], hence it sufficies to show convergence for φ ∈ C2[−∞,∞].
Now by Corollary 5.3 and Lemma 5.4,

‖(Tn)◦nφ− Tgφ‖ = ‖(Tn)◦nφ− (T 1√
n
g)
◦nφ‖ ≤ n‖Tnφ− T 1√

n
gφ‖

≤ ‖n
(
T 1√

n
fφ− φ

)
− n

(
T 1√

n
gφ− φ

)
‖,

which, by adding and subtracting 1
2
φ′′, using triangle inequality, and applying Lemma 5.5

(with an = 1√
n
), goes to 0 as n→∞.
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A Measure Theory Results

Lemma A.1. Let µ and ν be two finite Borel measures on R and assume that
∫
fdµ =

∫
fdν

for every bounded continuous function f. Then µ = ν.

Proof. It suffices to show µ(a, b] = ν(a, b], a < b ∈ R, since half open sets generate the
σ−algebra. Consider ft = 1

t
1[0,t) ∗ 1(a,b], t ≥ 0. Since

ft(x) =
1

t

∫ x

−∞
1[0,t)(x− y)1(a,b](y)dy, (*)

then |ft(x)| ≤ 1 and |ft(x + y) − ft(x)| ≤ y
t
, so that ft is bounded and continuous. Hence

by assumption ∫
xtdµ =

∫
xtdν. (**)

If x ≤ a, then (*) implies ft(x) = 0. If x > b, we write

ft(x) =
1

t

∫ b

a

1[0,t)(x− y)dy =
1

t

∫ x−a

x−b
1[0,t)(y)dy

to see that ft(x) = 0, if x − b > t. Finally, if a < x ≤ b, ft(x) = 1
t

∫ t
0
dy = 1, for t < x − a.

Consequently, limt→0 ft(x) = 1(a,b](x), x ∈ R. By the Lebesgue Dominated Convergence
Theorem, we may let t→ 0 in (**) to obtain µ(a, b] =

∫
1(a,b]dµ =

∫
1(a,b]dν = ν(a, b].

Definition A.2. A function f : [a, b]→ R is said to be of bounded variation on [a, b] if and
only if there is a constant M > 0 such that

n∑
i=1

|f(xi)− f(xi−1)| ≤M

for all partitions π = {x0, x1, . . . , xn} of [a, b].

Theorem A.3. (Jordan Decomposotion) If f is of bounded variation, then f can be
written as a difference of two monotone increasing functions, that is, f = g − h for g, h
monotone increasing.

Proof. See [2] (Provides a more detailed result than the one above).

Theorem A.4. (Froda’s theorem) Let f be a real-valued monotone function on an interval
I. Then the set of discontinuities of the first kind is at most countable.

Proof. See [3].

Corollary A.5. If f : [a, b]→ R is of bounded variation, then f is Borel measurable.

Proof. By the Jordan Decomposotion, f = g − h. Then g and h are monotonically increas-
ing and by Froda’s theorem have countably many discontinuities. Hence they are Borel
measurable.

12



B π − λ Theorem

This section is taken mostly from [4] Probability and Stochastics by Erhan Çinlar, my favorite reference on
probability theory. Simply googling “π λ theorem” should yield similar results.

Definition B.1. A collection C of subsets of a set E is called a π−system if it closed under
intersections. A collection D of subsets of E is called a λ−system (sometimes called a Dynkin
system) if

a) E ∈ D

b) A,B ∈ D and A ⊃ B implies A\B ∈ D,

c) (An) ⊂ D and An ↗ A implies A ⊂ D,

where (An) ⊂ D means (An) is a sequence of elements of D and An ↗ A means the sequence
is increasing to A in the following sense:

A1 ⊂ A2 ⊂ . . . ,
⋃
n

An = A.

It is obvious that a σ−algebra is both a π−system and a λ−system. The converse is also
true, and it is not too difficult to show. The proof is left as an exercise.

Proposition B.2. A collection of subsets of a set E is a σ−algebra if and only if it is both
a π−system and a λ−system on E.

The next lemma is in preparation for the main theorem of this section. Its proof is left
as an exercise in checking the λ−system conditions one by one.

Lemma B.3. Let D be a λ−system on E. Fix D ∈ D and let

D̂ = {A ∈ D : A ∩D ∈ D}.

Then D̂ is again a λ−system.

Notation. For a collection of subsets of a set E, we denote σC as the smallest σ−algebra
containing C, that is, if C1, C2, . . . , are all σ−algebras containing C, then

σC =
⋂
n

Cn.

The following theorem is the main result of this section, sometimes called the π − λ
theorem.

Theorem B.4. Monotone Class Theorem. If a λ−system contains a π−system, then it also
contains the σ−algebra generated by that π−system.
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Proof. Let C be a π−system. Let D be the smallest λ−system on E that contains C, that
is, D is the intersection of all λ−systems containing C. The claim is that D ⊃ σC. To
show it, since σC is the smallest σ−algebra containing C, it is enough to show that D is a
σ−algebra. In view of Proposition B.2, it is thus enough to show that the λ−system D is
also a π−system.

To that end, fix B ∈ C and let

D1 = {A ∈ D : A ∩B ∈ D}.

Since C is contained in D, the set B is in D; and Lemma B.3 implies that D1 is a λ−system.
It also contains C : if A ∈ C then A ∩ B ∈ C since B is in C and C is a π−system. Hence,
D1 must contain the smallest λ−system containing C, that is, D1 ⊃ D. In other words,
A ∩B ∈ D for every A ∈ D and B ∈ C.

Consequently, for fixed A in D, the collection

D2 = {B ∈ D : A ∩B ∈ D}

contains C. By Lemma B.3, D2 is a λ−system. Thus, D2 must contain D. In other words,
A ∩B ∈ D whenever A and B are in D, that is, D is a π−system.

This result is surprisingly powerful; the route to proving existence and uniqueness of the
Lebesgue measure provided in most probability theory texts involve use of the Monotone
Class Theorem. There are also several other applications such as the following. (The fol-
lowing proposition is irrelevant to the rest of the text but is an interesting application of the
Monotone Class Theorem.)

Proposition B.5. Every set A ∈ B(Rn) has the following property: for every probability
measure P on (Rn,B(Rn)) and for every ε > 0, there is a closed set F and an open set G
such that F ⊂ A ⊂ G and P(G\F ) < ε.

Proof. Let F be the collection of all sets satisfying the described property. We will perform
the following: (i) Show F is a λ−system. (ii) Show F contains all of the closed sets. (iii) If
C is the collection of all closed subsets of Rn, then C is a π−system and σC = B(Rn). (iv) F
is a λ−system and contains C which is a π−system, so the Monotone Class Theorem implies
that F ⊃ B(Rn). Therefore all A ∈ B(Rn) have the desired property.

(i) ∅ ∈ F is obvious. To show F is closed under complementation, suppose A ∈ F , so for
each ε > 0, we have a cloased set F and an open set G such that F ⊂ A ⊂ G and P(G\F ) < ε.
But then F c is open, Gc is closed, Gc ⊂ Ac ⊂ F c, and P(F c\Gc) = P(G\F ) < ε; therefore
Ac ⊂ F . To show F is closed under countable unions, let A =

⋃∞
k=1 where Ak ∈ F for each

k. For each ε > 0, there is a corresponding sequence of closed sets (Fk) and sequence of open
sets (Gk) such that Fk ⊂ Ak ⊂ Gk and P(Gk\Fk) < ε/2k+1, k = 1, 2, . . . . Let G =

⋃∞
k=1Gk

and F =
⋃m
k=1 Fk, where m is chosen such that P(

⋃∞
k=1 Fk\

⋃m
k=1 Fk) < ε/2. Then G is open,

F is closed, F ⊂ A ⊂ G, and

P(G\F ) ≤ P

(
G\

∞⋃
k=1

Fk

)
+ P

(
(
∞⋃
k=1

Fk\F

)
<

∞∑
k=1

ε

2k+1
+
ε

2
= ε.
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Therefore F is a σ−algebra and by Proposition B.2 it is a λ−system.
(ii) Now choose a closed set F. Let Gk = {x ∈ Rn : ‖x−y‖ < 1/l, for some y ∈ F}. Then

each Gk is open, G1 ⊃ G2 ⊃ . . . , and
⋂∞
k=1Gk = F. Thus, for each ε > 0, there exists an m

such that P(Gm\F ) < ε. It follows that F ∈ F .
By statements (iii) and (iv) above, the proof is complete.

C Arzela-Ascoli Theorem

Most of this section comes from [5] A Course in Functional Analysis by John Conway . Googling “Arzela-
Ascoli Theorem” should yield similar results.

Definition C.1. If X is completely regular and F ⊂ C(X), then F is equicontinuous if
for every ε > 0 and every x0 ∈ X there is a neighborhood U of x0 such that |f(x)−f(x0)| < ε
for all x ∈ U and for all f ∈ F .

Note that for a single function f ∈ C(X),F = {f} is equicontinuous. The concept of
equicontinuity states that one neighborhood works for all f ∈ F .

Recall that a metric space X is bounded if there exists some number r such that d(x, y) ≤
r for all x, y ∈ X. The space X is totally bounded if for all r > 0 there exists finitely many
open balls of radius r whose union covers X. A consequence is that every totally bounded
space is bounded.

Theorem C.2. The Arzela–Ascoli Theorem. If X is compact and F ⊂ C(X), then F
is totally bounded iff F is bounded and equicontinuous.

Proof. Suppose F is totally bounded. Then F is bounded. To show equicontinuity, if ε > 0,
then there are f1, . . . , fn ∈ F such that F ⊂

⋃n
k=1{f ∈ C(X) : ‖f−fk‖ < ε/3}. If x0 ∈ X, let

U be an open neighborhood of x0 such that for 1 ≤ k ≤ n and x ∈ U, |fk(x)− fk(x0)| < ε/3.
If f ∈ F , let fk such that ‖f − fk‖ < ε/3. Then for x ∈ U,

|f(x)− f(x0)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(x0)|+ |fk(x0)− f(x0)|
< ε.

Hence F is equicontinuous.
Now assume that F is equicontinuous and F ⊂ ballC(X). Let ε > 0. For each x ∈ X, let

Ux be an open neighborhood of x such that |f(x)− f(y)| < ε/3 for f ∈ F and y ∈ Ux. Now
{Ux : x ∈ X} is an open covering of X. Since X is compact, there are points x1, . . . , xn ∈ X
such that X =

⋃n
j=1 Ux.

Let {α1, . . . , αn} ⊂ {z ∈ F : |z| < 1} such that {z ∈ F : |z| < 1} ⊂
⋃m
k=1{α : |α − αk| <

ε/6}. Consider the collection B of those ordered n−tuples b = (β1, . . . , βn) for which there is
a function fb ∈ F such that |fb(xj)−βj) < ε/6 for 1 ≤ j ≤ n. Note that B is not empty since

f(x) ⊂ {z ∈ F : |z| < 1} for every f ∈ F . In fact, each f ∈ F gives rise to such a b ∈ B.
Moreover B is finite. Fix one function fb ∈ F associated as above with b ∈ B. It is enough
to show that F ⊂

⋃
b∈B{f : ‖f − fb‖ < ε}, since this would imply that F is totally bounded.
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If f ∈ F , there is a b ∈ B such that |f(xj) − fb(xj)| < ε/3 for 1 ≤ j ≤ n. Therefore if
x ∈ X, let xj be chosen such that x ∈ Uxj . Thus |f(x)− fb(x)| < |f(x)− f(xj)| + |f(xj)−
fb(xj)|+ |fb(xj)− fb(x)| < ε. Since x was arbitrary, ‖f − fb‖ < ε.
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