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Preface

Most the content except for the appendix comes from [1], a book by Adam Bobrowski
entitled Functional Analysis for Probability and Stochastic Processes. This book definitely
helps tie a gap for probabilists to better understand functional analysis, and for analysts to
better understand probability theory. The reader may assume that, unless cited otherwise,
the content being read comes from this book, though there were some personal comments
added, and some proofs were omitted from the book so I wrote them myself. The order is
as follows. We first go over some measure theoretic preliminary results, and then define an
operator based on a measure. Convergence of measure (in some sense) is then equivalent to
convergence of these operators in the correct topology, and for a specific case we show that
a sequence of operators converges, proving the central limit theorem.

Remark 0.1. This is an extremely untraditional way of proving the Central Limit Theorem:;
in fact, I was unable to find any other source that proved it using this method, while every
other method I found uses the Fourier transform. I chose this approach because it uses what
we have covered all year and gives further results about these topics (including measure
theory, Banach spaces, weak™ topology, C'(X) spaces, and operators).

Remark 0.2. Traditionally in probability theory the symbol €2 is a set, F is a o—algebra,
and PP is a probability measure, so (€2, F,P) is a probability space. Furthermore, the letter
X is typically used to denote a random variable (a measurable function) on the probability
space. To avoid notational confusion, I will stick with (X, Q, ) as a measure (or probability
if u(X) = 1) space, and measurable functions will be denoted f, g, etc..

1 Measure Theory Preliminaries

Suppose that (X, Q, i) is a measure space and f is a measurable map from (X, 2) to another
measurable space (X', ). Consider the set function p; on €' defined by

pr(A) = p(f~1(A)) = u({z : f(z) € A}).



It is easy to show that jr is a measure on (X’,€'). The measure (i is called the transport
of the measure p via f, or a measure induced on (X', ) by p and f. In particular, if u
is a probability measure (i.e. p(X) = 1) and (X', ) = (R", M,,(R")), where M,,(R") are
the Lebesgue measurable sets on R", then py is called the distribution or law of f.

Proposition 1.1. A measurable function ¢ defined on X’ is integrable with respect to ps
iff ¢ o f is integrable with respect to u, and

dus = o fdu. 1
X/¢Mf /Xqﬁfu (1)

Proof. First suppose ¢ = > a;14, for A; € Q' is a positive integrable simple function.
Compute

d,uf / Z Q; ]lA dﬂf Z alluf
= Z aip(y: fly) € 4;) = /X Zai]lAi(f(?/))dﬂ(w
- [ o Wi,

Therefore the proposition holds in the simple function case. We can extend the result to
positive functions by the monotone convergence theorem, and finally all functions by linearity
and triangle inequality. O

Equation 1 is called the change of variables formula. A particular case is that where
a measure, say v, is already defined on (X', '), and p; is absolutely continuous with respect
to v. If the Radon-Nikodym derivative is ¢ = ?—Vf, then the change of variables formula reads

[ oesin= [ odus= [ ouav
X X/ X/

Example 1.2. Suppose we have a probability space (X, €2, ) and a measure space (R, B(R), m),
where m is the Lebesgue measure. Let f : X — R be a function defined through its distri-
bution which satisfies %(x) = #e‘ﬁ/z. Then for A € B(R), we have

1

2T

e 2.

u(f e )= / 14(f(9))duly) = / 14(2)

The function f is said to be a standard normal random variable and its distribution is

defined by ug(dz) = \/# e " 2d.

2 Measures as operators

Notation. e BM(R) is the space of bounded Borel measurable functions on R;

e (4(R) C C(R) is the subspace consisting of bounded continuous functions;
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o UC,(R) is the space of bounded uniformly continuous Borel measurable functions on

R

Y

e (y(R) is the space of continuous functions that vanish at infinity.

o My(X) is the space of bounded scalar-value Borel measures on a topological space X.
All of the function spaces above are equipped with the sup norm.

Definition 2.1. Given a finite measure p on (R, B(R)) we may define an operator 7}, acting
in BM(R) by the formula

T)) = [ 1o+ iuty) )
R
Proposition 2.2. T, is well defined.

Proof. Let (R, B(R)) be our measurable space with a finite measure 1 and 7}, defined above.
First we check that T, maps BM(R) into itself. If f = 1(,4 for some real numbers a < b,
then
T, () = p(~00,b — @] — p(~00,a 1]

is of bounded variation (see appendix) and hence measurable by Corollary A.5. Let G be
the class of measurable sets such that for A € G, T),1,4 is measurable. We show that G is a
A—system (see Appendix B). First, T,1g(z) =0, so R € G. Next, let A,B € G and A D B.
Then

Tl p(z) = / Las(z + y)duly) = / 14z + y)duy) — / 15 (2 + y)dp(y)
=T,14(z) —T,1p(x),

so it is a difference of measurable functions and hence measurable. Lastly let (A,) € G be a
sequence of increasing sets such that |J, A, = A. Then

m—ro0

T da(z) = / 1y, a,(x + 9)du(y) = im [ 1 a (@ + y)duly)

by monotone convergence theorem. Since the limit of measurable functions on R is measur-
able (Weaver Exercise 2.7), T,,14(x) is measurable. We have already shown that intervals
are contained in G, and intervals generate B(R), so by the monotone class theorem (Theorem
B.4), G = B(R). Hence T}, f is measurable for any f = 14, where A € B(R). By linearity of
integral this is also true for simple functions. Since pointwise limits of measurable functions
are measurable, this extends to all f € BM(R). As for its boundedness, we have

TS < sup (T.f)(@)| < supsup [ f (2 + y)[W(R) = || fll(R),

zeR yeR

with equality for f = Ig. Thus ||7,|| = ©(R) and in particular ||7),|| = 1 for a probability
measure /. [



Remark 2.3. T, is invariant for the subspaces C,(R) and UCy(R). The Cy(R) case follows
by Lebesgue Dominated Convergence Theorem and the UC,(R) case follows from

(T ) (@) = (Tuf) (W) < sup |f(z +2) = fy + 2)|u(R),  z,y €R.

z€R
It can similarly be shown that 7, maps Cp(R) into itself.
Proposition 2.4. If 7), € B(B(R)), then it uniquely determines .

Proof. Note that if T}, = T,,, then

The result follows from Lemma A.1. OJ

Corollary 2.5. The map p — T}, is a linear invertible map from M,(R) into B(BM (R))
(bounded linear operators on BM(R))

3 Relating to Probability

3.1 Independence

Definition 3.1. Given a measure space (X, 2, i), a topological space (X', '), and a function
f: X — X', we say the o—algebra generated by f, written o(f), is the smallest algebra
containing the sets f~'(A) for all A € (0.

Definition 3.2. Let space (X, (2, u) be a probability space. Let F;,j € J be a family of
classes of measurable subsets (J is an abstract index set). The classes are termed mutually
independent if for all n € N, all j;,...,7, € J, and all A; € Fj,,i = 1,...,n the following

holds: . .
H (ﬂ Ai) = HM(A’L)

The classes are termed pairwisely independent if for all n € N, all #;,t, € J, and all
A e Fji=1,2,
(A1 N Az) = p(Ar)p(As).

Functions f;,j € J are said to be mutually (pairwisely) independent if the o—algebras
F; = o(f;) generated by f; are mutually (pairwisely) independent.

From now on, the phrase “classes (functions) are independent” should be understood as
“classes (functions) are mutually independent”.



3.2 Convolution

Definition 3.3. For any two finite Borel measures p, v, we may define the convolution p * v

B (= v)( //ﬂgy—i—zdu y)dv(z)

for all Borel measurable F.

Proposition 3.4. Two functions f and g defined on a probability space into a Borel measure
space are independent iff the distribution of (f, g) is pf ® pg.

Proof. (<) Let A € o(f),B € o(g). Then A = {z : f(z) € A} and B = {x : g(x) € B}. If
[i(f.9) = M @ fig, then

AN B) = u1.9)(A % B) = s (A)pg(B) = p(A)u(B).
(=) If D = A x B is an open set, then
11(1.9) (D) = pisg) (A x B) = p({z : f(z) € A} {y: g(y) € B}) = puy(A)py(B).

Since the open sets generate the Borel o—algebra, it holds for all Borel sets.
O

Corollary 3.5. If f and g are two independent functions on a probability space (X, 2, u),
then the distribution of their sum is the convolution of their distributions:

Hftg = Hf * [hg.

Proof. This is a simple computation using Proposition 3.4:

rsoA) = (o s 1)+ 9(a) € A)) = [ Lwesenda(o)
//ﬂ{erteA}d fy @ pg) (s,1) //l{s+t€A}d:uf $)dpig (1)
= (pug * pg)(A).

4 Convergence of Measure

On a measure space (X, Q, u), if f: X — X’ for a target space (X', ), then we may assign
it to the operator Ty defined by T} :=T),, where py is the transport measure of f.

Recall the general Riesz-Markov theorem from Weaver.

Theorem 4.1. Let X be a second countable locally compact Hausdorff space. Then every
bounded linear functional on Cy(X) is given by integrating against a scalar-valued Borel

measure on X, and this pairing implements an isometric isomorphism between Cy(X)" and
M(X).



From this, we can consider weak™ convergence of Borel measures on X. Actually, if X
is only locally compact, it is often more convenient to consider X* ,the one-point compact-
ification of X, and to use C'(X*) as the set of test functions for weak™ convergence. The
reason is that it may happen that some mass of the measure may escape to infinity, as in
the following example.

Example 4.2. Let X = R* and p, = %50 + %5,“ where 0 is the Dirac measure equaling
1if k € A and 0 otherwise. In this case, for any f € Co(RT), [ fdu, converges to 1 f(0),
so that p, as functionals on Cy(R") converge in the weak* topology to an (improper!) dis-
tribution %50. In this approach it is unclear what happened with the missing mass. Taking
an f € C((R")*) = C([0,0]) clarifies the situation, because for f € C(]0,o0]) we see that
[ fdp, converges to 1 f(0) + 1 f(c0), and so p, converges to 30y + 10c.

The following lemma serves very well as a useful tool in proving weak* convergence of
measures. It is the main tool in proving the Central Limit Theorem. It involves use of the
Arzela-Ascoli Theorem — see Appendix C. First we define the strong operator topology.

Definition 4.3. If X and Y are Banach spaces, the strong operator topology is the
topology defined on B(X,Y) generated by the family of seminorms {p, : * € X}, where
p(T) = ||[Tz|ly for T € B(X,Y). Hence if | T,x — Tz|y — 0 asn — oo for all z € X, we
say T, converges strongly to 7'

Lemma 4.4. A sequence i, of probability measures on [—o00, co] converges to a probability
measure ¢ in the weak™ topology iff the corresponding operators T}, in C'([—o00, 00]) converge
strongly to 7).

Proof. Suppose T, — T strongly, that is, by Definition 2.1, ||7},,f — T,.f|| — 0 for all
f € C([—o00, 00]). That is,

sup /f(x +y)dun(y) — /f(fr + y)du(y)‘ — 0.
However, the supremum is over all z, so the case where x = 0 yields | [ f(y)dun(y) —
[ f(y)du(y)] — 0. But in this case, the left hand side is actually equal to |u,(f) — u(f)]-
This holds for all f € C([—o00,0]), so p, — p in the weak™ topology.

Now suppose p, — i in the weak™ topology. By assumption, for any f € C([—o0, o0])
and any x € (—00,00) there exists the limit of g,(z) = [ f(x + y)du,(y), as n — oo, and it
equals g(z) = [ f(z + y)du(y). Moreover, We will prove that g, converges to g uniformly,
i.e. strongly in C[—o0, o).

We claim that the family (g,) is bounded by || f|| and is equicontinuous on [—o0, o],
so that the assumptions of the Arzela-Ascoli Theorem (Theorem C.2) are satisfied. In this
case, the family (g,,) will be uniformly bounded, and the result follows: toward contradiction
suppose g, - ¢ strongly, and choose a subsequence that stays at some distance € > 0 from g.

LAn improper distribution is a distribution that is not a probability distribution.



By the Arzela-Ascoli Theorem, there exists a subsequence of our subsequence that converges
uniformly to some § € C(|—00, 00]). By uniqueness of limit of g, this subsequence must also
converge (pointwise) to g, implying that § = g, a contradiction.

It remains to prove the claim, that is, that (g,) is bounded by || f|| and is equicontinuous
on [—oo,00]. Since f € C([—o0,00]), for a given € > 0 there exists 6 > 0 such that for
v,y € R, |f(y) — f(¥)| < € provided |y — 3| < 0. Hence, for any z € R and |h| < 4, we also
have that

wdw+m—ﬂA@hg/V@+h+w—f@+wWMAw<a

since i, is a probability measure. Since this holds for all n, this proves that g, is equicon-
tinuous at x € R. To prove it is equicontinuous at oo, we first take ¢ > 0 and define
fk S C([—O0,00]),]{? Z 1 as fk(l’) = m. Then, hmk_mo fk([f) = :H_[tpo)(l'),l' € R.
Hence
lim sup i, [t, 00) < lim /:L‘kdp,n :/xkdpn — ult,00).
n—00 k—oo

n—oo
This implies that given an € > 0 we may choose a t > 0 so that p,[t,00) < €, for sufficiently
large n. Since such a t may be chosen for each n > 1 individually, as well, and x belongs to
C([—00,¢]), we may choose a t so that p,[t,00) < € for all n > 1 and |f(x) — f(o0)| < €,
for x > t. Now, for x > 2t,

19(00) — gala r</ /' F(@ + 9)ldin(y) < €+ 2] flle

proving that y, are equicontinuous at co. The case of —oo is treated in the same way. [

5 Central Limit Theorem

5.1 Sum of Normal Random Variables

Recall that f has a standard normal distribution if %(m) = \/%e_ﬁ/ 2 Tt turns out that
if ¢ has a standard normal distribution and is independent of f, then f 4 ¢ has a normal
distribution (no longer standard, meaning that d‘;f—mﬂ(x) will differ by constants in some
fashion).

Example 5.1. We compute fify4. By Corollary 3.5, fiy1g = fty * fig.

ro(A) = (s % 1) (4 t//iAy+zmu<m%<>

1
://IIA(u)—e_(“_”) Pe="*Pdvdu (*)

2

by the change of variable y + z = u, z = v. Expand the exponent and complete the square:

, U’ u\2  u?
= —v ———I—uv:—<v——> e

—(u—v)* W
2 2 2 2



In general, change of variable implies that the following equality holds

2/2d ].

1 o
27

| = [ e =

Hence (*) becomes

/ / nA(u)%e—(“—¥>2—fdvdu: / 14 (u) ﬁi/ﬁe_uz/‘ldu.

Hence d’;’;j 9(x) = ﬁ\l/ﬂe_xz/ 4. In fact, we say a function h who has the density
d,LLh (.T) e 1 6_(50_#)2/(20'2)
dm ovV2rm

is a normal random variable with mean i and variance o2. We have therefore shown that f+g
is a normal random variable with mean 0 and variance 2. One can show by induction that
if f1,..., fn is a sequence of independent standard normal random variables, then f; + fo +
-+ + f, has the normal distribution with mean 0 and variance n. In an even easier fashion,
one may show af; has the normal distribution with mean 0 and variance a?. Consequently,

I

Vn Vn

has the standard normal distribution.

5.2 Operator Composition

Proposition 5.2. (7,7,¢)(z) = T,..(¢). The map p — T}, is a homomorphism of two
Banach algebras. p +— T), changes convolution into operator composition.

Proof.

(T,T,6)(x) = / (T,6)(z + y)u(dy) = / / o+ y -+ 2)v(dz)p(dy)
= [ ol + )0 v){dD) = Ty (o)

]

Since for each function we have the measure piy, we can assign f to the operator Ty =T}, .
By Corollary 3.5 fiy4q = ftf * ig, so Proposition 5.2 implies Ty, = T§T,.

Corollary 5.3. If f and fi, ..., f, are independent standard normal random variables, then

Ty = Tﬁ > (Tﬁh) , where (-)°" means the n—fold composition.

Proof. The first equality comes from Example 5.1 and Proposition 2.4, and the second comes
from Proposition 5.2. O]



The following lemma gives us a bound for the norm of the composition of operators.

,,,,, LSl T}

Lemma 5.4. Let S;, T; be linear operators in a Banach space and let M = max;_;
Then

150Sn_1++S1 =TTy -+ Th|) < M™1 E |T; — Sil|.
i=1
In particular, for any S and 7" and M = max{||S|, |7},

IS" = 17| < M n||S = T

Proof. We show this by induction. It clearly holds for n = 1. Assume it holds for n = k,
that is,

k
1SkShr -+ St = TeThoy - - Thl| < M¥2N || — Sy
=1

Define Ak = SkSk,1 s Sl and Bk = Tka,1 ce Tl- Then

[Ak+1 = Brgall = [|Ske1 Ak — Trerr Bell = | (Sk1 Ak — Th1 Ax) + (T 1 Ax — Tha By ||
< Skr1 Ak — T Akl + [T 1 Ak — T 1 Be ||
< NARISkr1 = Thgr || + | Thsal| [ Ax — Bell

k
< ANk = Tl + 1T |51 )T = Sl
=1

k
< MM iy — Tl + MM 3T - )]
=1
k+1

=M= s
=1

We could have used two different M’s, one being the max up to k and the other up to k+1,
but the proof is clear. Note that we used the operator composition inequality [|.S o T'|| <

ISTHI- O

5.3 Proof of Central Limit Theorem

Lemma 5.5. Let (X,Q,p) be a probability space and f € L*(X). Let [ fdu = 0 and
[ f2dp = 1. Also, let a, be a sequence of positive numbers such that lim,,_, a, = 0. Then,
for any ¢ € C?[—o0, 0], the space of continuous twice differentiable functions on [—o0, 00]
with continuous derivatives, the limit of é(Tan 7@ — ¢) exists and does not depend on f. In

fact, it equals %qﬁ” .
Proof. By the Taylor formula, for a twice differentiable ¢ and real numbers z and v,

o +9) = 6(x) + 90/ (@) + Lz + 00),



for some 0 < 6 <1 depending on x,y and ¢. Thus,
o {Tayote) — 0(0)) = = | [ 0o + D st0) — o(2)
= 2| [ ol + ant@auts) - o)

_ i / Dz + anf(y)) — d(x)] du(y)
1

al f2(y)
9

- {an ) (x) + ¢"(z + ban f (y))} dp(y)

- / @gﬁ”(l‘ +0a, f(y))du(y)

Fix € > 0. By the above equality, we would like to show

G lTusote) - 000 - 5| = | [ F320 4 b0 )t - 50710

Since ¢" € C[—o00, 00, for fixed € > 0 we can choose ¢ such that |y| < ¢ implies |¢"(x +
y) — ¢"(y)| < e. Break the integral into the set where |f| > % and where |f| < %. Note

that || f||3 = 1 implies 3¢"(2) = [ 5% W) ¢(z)dp. Hence

S/f|<ai f22(y)\
<e/f2

where we subtly used 0 < 6 < 1 so that |fa, f(y)| < |f(y)| < on the set |f| < %.
For the opposite, simply note

/ 5 fT@)qb//(Q:—l—Qanf(y))dN(y) < ] f éy)
12 122

Zan

— 0.(%)

S9'(2)

&'+ ban () — 38'(2)] duly)

/ 5 @w(m + Oa, f(y))du(y) —
<

>

~
<€

[\’)Im

du(y) — 0

by the monotone convergence theorem since u(f = oo) = 0 from || f||3 = 1.

Putting it all together, we have shown the left hand side of (*) is less than a sequence
converging to 0 plus €/2, with no = appearing. Hence taking the supremum over all z and
n — 0 shows the result. O

Theorem 5.6. Central Limit Theorem. If f,,,n € N is a sequence of independent random
variables with the same distribution with m := [ f,du and o? := [ f2du — m?, then the
distribution of

= e m)

converges weak™ to the standard normal distribution.
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Proof. By Lemma 4.4, it is enough to show convergence of the corresponding operators in
the strong topology. Without loss of generality, assume m = 0 and 0? = 1 (otherwise we

consider the function f_Tm which will satisfy these properties). Let T,, = T' L where f is any

of the f; (the choice is irrelevant since they have the same distribution). By the independence
assumption, Proposition 5.2 implies T' LY h T (T,,)°", so we need to show that (7,,)°"
converges strongly to 7,, where g has the standard normal distribution. Note that the set
C?[—00, o0] is dense in C[—o0, oo], hence it sufficies to show convergence for ¢ € C*[—o0, oa].
Now by Corollary 5.3 and Lemma 5.4,

(T ¢ = Tydll = 1(Ta)"d = (T )" 6]l < nllTud — Tyl
< |n (Tﬁfﬁb - ¢> —n (Tﬁgﬁb - ¢) I

which, by adding and subtracting %¢” , using triangle inequality, and applying Lemma 5.5

(with a,, = \/iﬁ), goes to 0 as n — oo. O
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A Measure Theory Results

Lemma A.1. Let p and v be two finite Borel measures on R and assume that [ fdu = [ fdv
for every bounded continuous function f. Then p = v.

Proof. 1t suffices to show p(a,b] = v(a,bl,a < b € R, since half open sets generate the
o—algebra. Consider f; = %ﬂ[o,t) * 1(qp,t > 0. Since

fulz) =1 / " Loy (@ — ) Les()dy. *)

—00

then |fi(2)| <1 and [fi(z +y) — fi(z)| < ¥, so that f; is bounded and continuous. Hence

by assumption
/xtdu = /xtdl/. (**)

If < a, then (*) implies f;(x) = 0. If x > b, we write

1

b
fi(x) = Z/ ﬂ[o,t)(x —y)dy = —/ ﬂ[o,t)(y)dy

to see that fi(x) = 0, if z — b > t. Finally, if a < z < b, fi(x) = 1 fot dy =1, for t < x — a.

1
Consequently, lim; o fi(z) = L y(x), 2 € R. By the Lebesgue Dominated Convergence
Theorem, we may let ¢ — 0 in (**) to obtain p(a,b] = [ Lydp = [ Lydv = v(a,b].
]

Definition A.2. A function f : [a,b] — R is said to be of bounded variation on [a, b] if and
only if there is a constant M > 0 such that

D_If @) = flzia)l < M

for all partitions © = {xg, z1,...,x,} of [a,b].

Theorem A.3. (Jordan Decomposotion) If f is of bounded variation, then f can be
written as a difference of two monotone increasing functions, that is, f = g — h for g, h
monotone increasing.

Proof. See [2] (Provides a more detailed result than the one above). O

Theorem A.4. (Froda’s theorem) Let f be a real-valued monotone function on an interval
I. Then the set of discontinuities of the first kind is at most countable.

Proof. See [3]. O
Corollary A.5. If f : [a,b] — R is of bounded variation, then f is Borel measurable.

Proof. By the Jordan Decomposotion, f = g — h. Then g and h are monotonically increas-
ing and by Froda’s theorem have countably many discontinuities. Hence they are Borel
measurable. O
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B 7 — )\ Theorem

This section is taken mostly from [4] Probability and Stochastics by Erhan Cinlar, my favorite reference on
probability theory. Simply googling “m A theorem” should yield similar results.

Definition B.1. A collection C of subsets of a set E is called a m—system if it closed under
intersections. A collection D of subsets of F is called a A—system (sometimes called a Dynkin
system) if

a) E€D
b) A,B € D and A D B implies A\B € D,
¢) (A,) C D and A, /A implies A C D,

where (A4,) C D means (A,,) is a sequence of elements of D and A,, ,/* A means the sequence
is increasing to A in the following sense:

Achc..., JA=A
n
It is obvious that a o—algebra is both a m—system and a A—system. The converse is also
true, and it is not too difficult to show. The proof is left as an exercise.

Proposition B.2. A collection of subsets of a set E is a o—algebra if and only if it is both
a m—system and a A—system on F.

The next lemma is in preparation for the main theorem of this section. Its proof is left
as an exercise in checking the A—system conditions one by one.

Lemma B.3. Let D be a A—system on E. Fix D € D and let
D={AeD:ANnDeD}.
Then D is again a A\—system.

Notation. For a collection of subsets of a set E, we denote oC as the smallest o—algebra
containing C, that is, if C1,C,, ..., are all c—algebras containing C, then

oC =(Ca.

The following theorem is the main result of this section, sometimes called the 7 — A
theorem.

Theorem B.4. Monotone Class Theorem. If a A—system contains a m—system, then it also
contains the o—algebra generated by that m—system.
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Proof. Let C be a m—system. Let D be the smallest A—system on E that contains C, that
is, D is the intersection of all A—systems containing C. The claim is that D D oC. To
show it, since oC is the smallest o—algebra containing C, it is enough to show that D is a
o—algebra. In view of Proposition B.2, it is thus enough to show that the A—system D is
also a m—system.

To that end, fix B € C and let

D,={AeD:ANnBeD}.

Since C is contained in D, the set B is in D; and Lemma B.3 implies that D; is a A—system.
It also contains C : if A € C then AN B € C since B is in C and C is a m—system. Hence,
D; must contain the smallest A—system containing C, that is, D; D D. In other words,
ANB €D for every A€ D and B € C.

Consequently, for fixed A in D, the collection

D,={BeD:ANBeD}

contains C. By Lemma B.3, D, is a A—system. Thus, Dy must contain D. In other words,
AN B € D whenever A and B are in D, that is, D is a m—system.
O

This result is surprisingly powerful; the route to proving existence and uniqueness of the
Lebesgue measure provided in most probability theory texts involve use of the Monotone
Class Theorem. There are also several other applications such as the following. (The fol-
lowing proposition is irrelevant to the rest of the text but is an interesting application of the
Monotone Class Theorem.)

Proposition B.5. Every set A € B(R") has the following property: for every probability
measure P on (R", B(R™)) and for every € > 0, there is a closed set F' and an open set G

such that FF C A C G and P(G\F) < e.

Proof. Let F be the collection of all sets satisfying the described property. We will perform
the following: (i) Show F is a A—system. (ii) Show F contains all of the closed sets. (iii) If
C is the collection of all closed subsets of R", then C is a m—system and ¢C = B(R"). (iv) F
is a A—system and contains C which is a m—system, so the Monotone Class Theorem implies
that F D B(R"). Therefore all A € B(R™) have the desired property.

(i) 0 € F is obvious. To show F is closed under complementation, suppose A € F, so for
each € > 0, we have a cloased set F' and an open set G such that F C A C G and P(G\F) < e.
But then F'° is open, G° is closed, G C A° C F*, and P(F°\G°®) = P(G\F') < ¢; therefore
A® C F. To show F is closed under countable unions, let A = | J,-, where A; € F for each
k. For each € > 0, there is a corresponding sequence of closed sets (Fy) and sequence of open
sets (G) such that Fj, C A C Gy and P(Gp\Fy) < ¢/281 k=1,2,.... Let G = U, G
and F' = J,_, F), where m is chosen such that P(U;—, Fi\ U,—, Fx) < €/2. Then G is open,
Fis closed, FF C A C G, and

P(G\F) <P <G\ G Fk> +P ((G Fk\F> < i 2,;1 + % =«

14




Therefore F is a o—algebra and by Proposition B.2 it is a A—system.

(ii) Now choose a closed set F. Let G, = {z € R" : ||x —y|| < 1/, for some y € F'}. Then
each Gy, is open, G; D G2 D ..., and [,—, G, = F. Thus, for each € > 0, there exists an m
such that P(G,,\F) < e. It follows that F' € F.

By statements (iii) and (iv) above, the proof is complete. O

C Arzela-Ascoli Theorem

Most of this section comes from [5] A Course in Functional Analysis by John Conway . Googling “Arzela-
Ascoli Theorem” should yield similar results.

Definition C.1. If X is completely regular and F C C(X), then F is equicontinuous if
for every € > 0 and every zp € X there is a neighborhood U of z such that |f(z)— f(zo)| < €
for all z € U and for all f € F.

Note that for a single function f € C(X),F = {f} is equicontinuous. The concept of
equicontinuity states that one neighborhood works for all f € F.

Recall that a metric space X is bounded if there exists some number r such that d(z,y) <
r for all z,y € X. The space X is totally bounded if for all » > 0 there exists finitely many
open balls of radius » whose union covers X. A consequence is that every totally bounded
space is bounded.

Theorem C.2. The Arzela—Ascoli Theorem. If X is compact and F C C(X), then F
is totally bounded iff F is bounded and equicontinuous.

Proof. Suppose F is totally bounded. Then F is bounded. To show equicontinuity, if € > 0,
then there are fy,..., f, € Fsuch that F C (J,_{f € C(X) : [|f—ful <€/3}. Ifzg € X, let
U be an open neighborhood of zy such that for 1 <k <n and z € U, |fp(x) — fr(x0)| < €/3.
If feF,let fr such that ||f — fx]| < €/3. Then for x € U,

[f (@) = fzo)| < [f(2) = fu(@)] + | fe(x) = fulzo)| + | fu(x0) — f(20)]

< €.

Hence F is equicontinuous.

Now assume that F is equicontinuous and F C ballC(X). Let € > 0. For each x € X let
U, be an open neighborhood of z such that |f(x) — f(y)| < ¢/3 for f € F and y € U,. Now
{U, : © € X} is an open covering of X. Since X is compact, there are points xy,...,z, € X
such that X = Jj_, U,.

Let {a1,...,a,} C{z€F:|z|] <1} suchthat {z e F:|z| <1} C U  {a:|a—a <
€/6}. Consider the collection B of those ordered n—tuples b = (f31, . .., 3,) for which there is
a function f, € F such that |fy(x;) — ;) < €/6 for 1 < j < n. Note that B is not empty since
f(x) c {z€F:|z| <1} for every f € F. In fact, each f € F gives rise to such a b € B.
Moreover B is finite. Fix one function f, € F associated as above with b € B. It is enough
to show that 7 C (J,cp{f : ||f — foll < €}, since this would imply that F is totally bounded.
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If f e F, thereis a b € B such that |f(z;) — fo(x;)| < €/3 for 1 < j < n. Therefore if
v € X, let z; be chosen such that z € U,,. Thus |f(z) — fi(z)| < |f(2) — f(z;)| + |f(z;) —
To(z)| + | fo(xj) — fo(x)| < €. Since x was arbitrary, || f — fill < e O
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