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Mortality Rates
Consider some national mortality data
Observe D(xag , xyr ) deaths for an individual aged xag in calendar
year xyr
Out of E(xag , xyr ) exposures

I e.g. 100,000 individuals aged 50 in 2008, and 1,000 of those
individuals die throughout the year, then

D(50,2008) = 1000, E(50,2008) = 100,000

Central mortality rate is defined as

e−µ(xag ,xyr ) =
D(xag , xyr )

E(xag , xyr )
=

1000
100000

= 0.01

Mortality models model the log-mortality rate

µ(xag , xyr )

which is roughly linear in age (increasing) and calendar year
(decreasing)
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Mortality Modeling

(∼1850) Gompertz-Makeham Law

µ(xag , xyr ) ≡ µ(xag) = axag + b exp(cxag + d)

I Doesn’t take into account calendar year (technological advances)

(1992) Lee-Carter

µ(xag , xyr ) = αxag + βxagκxyr

where α, β, κ are separately modeled as time series,
e.g. κxyr ∼ ARIMA(0,1,0) + drift

I Began a trend of stochastic mortality models
I Captures more complicated dynamics
I Allows for uncertainty quantification
I Highly parametric
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Mortality Modeling
Extensions of Lee-Carter

I Adding cohort effect +γxyr−xag

Spline Models
I Nonparametric
I Hard to quantify uncertainty

(2018) Ludkovski-Risk-Zail

µ(xag , xyr ) ∼ GP(m,C)

I Models as a Gaussian process with prior mean m and covariance
kernel C

I Nonparametric
I Allows for uncertainty quantification
I Bayesian (easy to update)
I Handles edge uncertainty
I Handles missing data (tough with time series)
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Mortality Improvement

Mortality Improvement involves analyzing

MI(xag , xyr ) = µ(xag , xyr )− µ(xag , xyr − 1),

how mortality improves over time.
Typically the one-year difference is analyzed (as above)
We expect MI > 0 due to medical advances
The Society of Actuaries (SOA) publishes a study MP every year
to analyze US mortality improvement
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US Mortality Improvement
MP-2014 / MP-2015

Published by SOA, uses “RPEC_2014" model
US CDC Data
MP-2014 uses years 1950-2009
Plans to update scales at least triennially; two years of additional
CDC data shows drastic change in later years

I MP-2015 emerges
I (Also showing MP-2016, MP-2017, came after this paper finished)
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Goal:

Model US Mortality data using Gaussian Process (GP) regression
Bayesian
Provides posterior Gaussian distribution for input of any age and
year
Offers easy analysis of both mortality and mortality improvement
simultaneously
Gaussian distribution implies one-year mortality improvement
factors remains Gaussian
Differentiable: can provide instantaneous mortality improvement
(still Gaussian)
Spatial approach inherently handles missing and edge data
Provide simple to use code with output through an R notebook
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Typical Regression Assumption
Hypothesis:

y = f (x) + ε

Observe y = y1:N for input locations x = x1:N

Want to understand the function f
I e.g. f (x) = β0 + β1x (simple linear regression)

ε is noise
I e.g. measurement error
I can’t observe f (x) directly

Assume ε ∼ N
(
0, σ2(x)

)
(often σ(x) ≡ σ ∈ R+)

Often in mortality modeling: f (x) is based on an ARIMA
process(es) or on splines
Our assumption: f is a Gaussian Process (modeling log-mortality,
x = (xag , xyr ))
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Gaussian Process

Defined as a collection of random variables {f (x)|x ∈ Rd}
Any finite subset has a multivariate Gaussian distribution with
covariance C(·, ·):

f (x1), . . . , f (xn) ∼ N
(

(m(x1), . . . ,m(xn)),C(x ,xT )
)
.

Fix mean function m and covariance kernel C; this provides a
prior distribution
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Modeling with Gaussian Processes

1 Declare prior mean function and covariance kernel
I Mean function can also be parametric and fitted with data; useful in

extrapolation
I Covariance kernel governs spatial relation between points
I Hyperparameters can be specified using expert knowledge or fitted

from data

2 Output can be easily evaluated at any location
I Output is a random variable with mean and covariance depending

on neighboring inputs
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Posterior
Observe pairs (y ,x) = ((y , x)1:N)

I (e.g. y = historic log–mortality and x = (age, year))
Gaussian assumptions imply that marginally for any input x

f (x)|(y ,x) ∼ N
(

m∗(x), s2
∗(x)

)

m∗ and s2
∗ are the posterior mean and variance functions{

m∗(x)
.

= c(x)T (C + Σ)−1y ;

s2
∗(x)

.
= C(x , x)− c(x)T (C + Σ)−1c(x),

(1)

where
c(x)

.
=
(

C(x , x i)
)

1≤i≤N
(covariances between x and inputs x)

C .
=
(

C(x i , x j)
)

1≤i,j≤N
(covariances between inputs x)

Σ
.

= diag
(
σ2(x i)

)
(diagonal matrix of noise variance)

(2)
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Covariance Kernels & Parameter Estimation
Common choice is squared-exponential (or Gaussian) covariance
kernel

C(x , x ′) = η2 exp

(
−

(xag − x ′ag)2

2θ2
ag

−
(xyr − x ′yr )2

2θ2
yr

)
.

Knowing mortality at x will greatly influence mortality at
“neighboring" x ’s

I e.g. knowing mortality for a 80 year old in 2015 greatly aids in
prediction of a 85 year old’s mortality in 2016; knowing a 50 year
old’s mortality in 2000 has a nearly non-existent effect

Implies hyperparameter family of Θ
.

= (θag , θyr , η
2, σ2)

I Also mean function hyperparameters (if included)
Estimates are fit using MLE; likelihood can be written out explicitly
due to Gaussian assumptions

I Done using R package DiceKriging
Alternatively, can use Bayesian approach with priors on Θ

I Separate package using STAN language
I Leads to non-Gaussian posterior
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Illustrative Example

Goal: Learn f (x) = sin(x) over domain [0,1.5π]

Observe realizations of

y = sin(x) + ε

where ε ∼ N(0, σ = 0.5)

Try:
I x = 0.25,0.5,0.75, . . . ,2.75,4.5 (N = 18)

Then update model with data on (1.5π,2π] to see how the overall
fit changes

I add x = 4.75, . . . ,6 (total N = 24)
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Illustrative Example
y = sin(x) + ε, ε ∼ N (0,0.01x)

1 Generate data from random process

y = sin(x) + ε, e ∼ N(0,0.5)
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Illustrative Example
Fit GP to N = 18 (x , y) pairs

Estimate hyperparameters (θ, η, σ)
Produce posterior mean, covariance matrix (provides credible
intervals)
Observe naturally increasing uncertainty at edge data
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Illustrative Example

Update GP with Nnew = 6 (x , y) pairs on [4.75,6]

(Optional) update hyperparameters (θ, η, σ)

Produce posterior mean, covariance matrix (provides credible
intervals)
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R Notebook Code
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Comments

m(x) = m assumed (clearly not true)
In practice,

I Data is usually detrended, or
I Parametric trend function e.g. f (x) = β0 + β1x assumed (and fitted

alongside)
Example is one-dimensional (x ∈ R)

I Framework naturally extends to multi-dimensional case (x ∈ Rd ),
for example

F f (x , y) = sin(x) cos(y) + 2xy
F f (age, year) = (mortality rate depending on age, year)
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R Notebook For GPs on Mortality Data

Provide R “code blocks" along with explanation of what it does and
discussion of results
Practitioner can choose to modify as much as needed

I For example, simply change cdcMale.csv to
myInsuranceCompanyData.csv

I Plots have changeable ranges (easy to choose what years to plot)
I ALL code is available, so programmers can easily modify as needed
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Data

CDC Data
United States
Ages 50–84, Years 1999–2014

I 1360 Data Points (x = (xag , xyr ))
I 84 is maximal age for CDC data
I 50 chosen as cutoff to minimize mixing lower age behavior
I 1999 earliest year available on wonder.cdc.gov
I Could add earlier years, but our analysis suggests they have little

effect
I Most relevant for longevity risk
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GP Model Assumptions

Observe central mortality rate e−µ(xag ,xyr ) = D(xag,yr )/E(xag,yr )

Fit log-mortality rate y to x = (xag , xyr ) pairs
Can try σ(x) based on Binomial assumption

I Overdispersion issues (µag,yr is unknown)
I Minimal change in final model from simply choosing σ := σ(x)

Use Gaussian covariance kernel
I Implies f is differentiable
I Minimal change in final model from other kernel choices

Changed m(x) trend function based on application
I In-sample analysis generally used m(x) = β0
I Out-of-sample generally used m(x) = β0 + β1xag + β2x2

ag + β3xyr
(like Gompertz)
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Posterior Predicted Mortality Rates

Showing m∗(x) for each ages 60–70
Left panels include historic observations
Right panel suggests mortality improvement
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Goals

In-sample smoothing
Extrapolation (both in calendar year and age)
Mortality Improvement

MIobs
back

(
xag ; yr

) .
= 1−

exp
(
µ(xag , yr)

)
exp

(
µ(xag , yr − 1)

)
compare with SOA MP-2015 results
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Loading Data
Input data should be an R data frame with

I age, calendar year, deaths, exposure
The corresponding log mortality rates are computed as

yn = log(Dn/Ln)

I Dn is the number of deaths and for the nth age/year pair
xn = (xn

ag , xn
yr ),

I Ln midyear count of lives
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Fitting the Model
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In-Sample Smoothing
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Mortality Over Time with Credible Bands
Posterior mean and 95% credibility bands for f∗ over calendar year
Can observe increasing uncertainty at edges
Observe mortality improvement then decline
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Extrapolation

Compare to apc model from R package stmomo

µ(x , t) = α(x) + κ(t) + γ(t − x),
∑

c

γ(c) = 0,
∑

c

cγ(c) = 0

GP produces similar forecasts with more desirable smoothness
properties
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Mortality Improvement

Typical way is to look at the annual backward improvement

MIobs
back

(
xag ; yr

) .
= 1−

exp
(
µ(xag , yr)

)
exp

(
µ(xag , yr − 1)

)
f∗(xag , yr) is a random variable, so we have the predicted mean
improvement

mGP
back

(
xag , yr

)
= E

[
MIGP

back
(
xag , yr

)] .
= E

[
1−

exp
(
f∗(xag , yr)

)
exp

(
f∗(xag , yr − 1)

)] .
I Available in closed form (lognormal distribution)

Also have MIMP
back

(
xag ; yr

)
(published MP-2015 improvement

factors)
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YoY Mortality Improvement Plots
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Comparing Mortality Improvement Methods

Raw improvements extremely noisy (unsurprising)
Smoothed methods both follow data well
GP implies a stronger decline

I Additional data suggests mortality deceleration
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GP Improvement Over Time
GP Improvements from 2000–2014 (in 2 year increments)

Shape changes (flips) over time
Consistent with MP-2015
Generally decelerating after age 55
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GP Mortality Improvement Heatmap

Heatmap indicates possible cohort type relation with mortality
improvement
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Backward Difference & Derivatives

f∗ denotes the fitted GP

1−

(
exp

(
f∗(xag , yr)

)
exp

(
f∗(xag , yr − h)

))1/h

≈ −
f∗(xag , yr)− f∗(xag , yr − h)

h
(3)

As defined, the typical annual mortality improvements are
backward differences with h = 1
Right side remains a GP by linearity
Taking limit as h→ 0 yields derivative

I Exists (depending on covariance kernel)

Closed form expressions for distribution of ∂f∗
∂xyr
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GP Derivative

Proposition

For the Gaussian Process f∗ with a twice differentiable covariance kernel C, the
limiting random variables

∂f∗
∂xyr

(xag , yr)
.

= lim
h→0

f∗(xag , yr + h)− f∗(xag , yr)

h
(4)

exist in mean square and form a Gaussian process ∂f∗
∂xyr
∼ GP(mdiff , sdiff ). Given the

training set D = (x , y), the posterior distribution of ∂f∗
∂xyr

(x∗) has mean and variancemdiff (x∗) = E
[

∂f∗
∂xyr

(x∗)
∣∣∣ x, y] = ∂C

∂x′yr
(x, x∗)(C + Σ)−1y,

s2
diff (x∗) = Var

(
∂f∗
∂xyr

(x∗)
∣∣∣ x, y) = ∂2C

∂xyr∂x′yr
(x∗, x∗)− ∂C

∂x′yr
(x, x∗)(C + Σ)−1 ∂C

∂xyr
(x∗, x),

where ∂C
∂x′yr

(x, x∗) =
[

∂C
∂x′yr

(x1, x∗), . . . , ∂C
∂x′yr

(xN , x∗)
]

and each component is computed

as the partial derivative of C (x , x ′) .

See Theorem 2.2.2 in Adler (2010) for more details/proof.
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Comparing Other Methods with GP Derivative
Blue is backwards mortality difference (as before); red is GP
derivative; black is MP-2015
Analysis of other years shows deceleration begins around 2010

I Implies mortality evolution is convex
F Justifies accelerating divergence between yearly difference and

derivative methods
I MP-2014 and MP-2015 begin to diverge around 2010

F Suggests that later years are crucial to mortality forecasts
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R Notebook Comments

R notebook approach illustrates ease of use of GP’s
Practitioners have many options:

I can simply change .csv file to their own data
I can change output ranges for plots (e.g. plot 2016 instead of 2015)
I have access to each plot and piece of code so programmers can

specialize if needed
Applied to US Females, Japan Male/Female, UK Male/Female
data

I Showed plausible forecasts for mortality and mortality improvement
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Conclusions

GP’s provide a variety of benefits to modeling mortality and
mortality improvement

I Bayesian approach (data driven)
I Posterior distribution for any location

F Including distribution of mortality improvement (both yearly difference
and instantaneous)

F Credible bands (historic and forecasting)

Relatively consistent results with MP-2015
I Four years of additional data pushes GP results in the direction that

MP-2015 took compared to MP-2014 (and MP-2016, 2017 found
later)

I Differences in results is likely due to data differences than model
issues

GP framework easily handles joint analysis of mortality rates and
mortality improvement
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Future Work

Modeling annual mortality improvement directly with GP

Monotonicity constraint: f
∣∣∣ ∂f
∂fage>0

Multiple populations
I Jointly modeling male & female mortality
I Multivariate GP of multiple countries and factors

Modeling by cause of death
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